Investigation of the decay of turbulence over a forest during the Boundary Layer Late Afternoon and Sunset Turbulence Experiment

Alexander, D., Pardyjak, E.R., Lothon, M., Lohou, F., Derrien, S., de Coster, O., Pietersen, H., and Pique, E.

Motivation

 Gaining an improved understanding of the various transitory processes associated with the afternoon boundary layer
Figure adapte

Figure adapted from Stull by Dan Nadeau

Outline

- Brief review of evening decay hypotheses in current literature
- Description of the Boundary Layer Late Afternoon and Sunset Turbulence (BLLAST) experiment and setup
- Comparison of BLLAST TKE decay results to Nadeau (2010), Goulart (2010), and Sorbjan (1997)
- Discussion of the competing buoyancy and mechanical TKE production processes during the decay

Authors	Method of Study	Region of Interest	Key Findings
Caughey et al. (1979)	Field Obs., Minnesota	Entire ABL	Top down heat flux
Nieuwstadt & Brost (1986)	LES, Ug = 0; inst. rem. flux	Integral quantities entire ABL	See H1, t ⁻ⁿ
Beyrich & Klose 1988	Field Obs., Wangara	Entire ABL	t* ~ u*/h
Sorbjan (1997)	LES, Ug = 0;	Integral quantities entire ABL	See H1, H2
Grant (1997)	Field Obs. Cardington, UK	Entire ABL	heat flux profiles strong cooling near the surface, t* ~ u*/h
Cole & Fernando (1998)	Laboratory	Entire boundary layer	σ _T & σ _w decay t ~ DT/(dTs/dt)
Acevado & Fitzgerald (2001)	Field	Surface Layer	Spatial Heterogienity
Pardyjak 2001	Field Obs., Phoenix	Surface Layer	Simple decay model $\sigma_{\rm T}~$ & $\sigma_{\rm w}$ decay at different rates
Shaw & Bernard (2002)	DNS		Delay of decay due to shear
Grimsdell & Angeine 2002	Field Obs., Urbana-Champaign	Entire ABL	inversion layer separation (ILS) and descent, demixing
Goulart et al 2003	Theoretical Spectral form of tke equation	Integral quantities entire ABL	

Authors	Method of Study	Region of Interest	Key Findings
Riley 2003	Laboratory Measurement, overlying stratification	Entire ABL	Overlying stratification effects u' ² more than w' ²
Pino et al 2006	LES, shear and overlying stratification	Entire ABL	Decay length scales, scaling exponents
Kumar et al. 2006	LES, diurnal cycle	Entire ABL	
Pardyjak et al. 2008	Field Observations Phoenix, AZ	Surface Layer	Spatial Heterogeneity of decay
Goulart et al. 2010	LES, contribution of shear production term to TKE	Entire ABL	Shear production dominates buoyant production in lower CBL
Nadeau et al. 2011	Model for afternoon and early evening decay of CBL	Surface Layer	Erfc fit to sensible heat flux along with H1

Hypotheses from the

- H1 Surface Heat Fite fairth et to zero" The volume integrated turbulence quantities are only a function of the initial CBL state and t/t* (Nieuwstadt & Brost)
- H2 Gradually Decaying Surface Heat Flux Turbulent decay is dependent on 2 time scales t* and tr (Sorbjan)
- H3 Limiting Cases (Sorbjan)

$$t_f / t^* \rightarrow 0$$
 Hs=0 @ $t_f=0$

Hypotheses (cont.)

 H4 –Mechanical effects in the boundary layer increase with decreasing z/L to the extent that in the lower part of the convective boundary layer, the mechanical term is dominant (Goulart)

THE UNIVERSITY OF UTAH[™]

TOGETHER WE REACH

MECHANICAL ENGINEERING The BLLAST Experiment

Figure adapted from Sorbjan by Dan Nadeau

Experimental Setup

UNIVERSITY OF UTAH[™]

Parameter	Sensor	Sampling frequency (or period)	Height of measurement
Wind component U			
Wind component V	CSAT Campbell sonic anemometer	10 Hz	31.55 m
Wind component W	(UTAH)		
Sonic temperature			
Specific humidity CO2 concentration	LICOR 7500 (LA)	10 Hz	
Black body temperature of radiometer			
Outgoing global radiation			
Incoming global radiation	CNR1 KIPP & ZONEN	1 Hz	28.69 m
Outgoing longwave radiation	(LA)		
Incoming longwave radiation			
Temperature		1 Ц-7	20.02 m
Relative humidity	Campbell HMP45 (LA)	I HZ	29.02 111
Wind component U			
Wind component V	CSAT Campbell sonic anemometer	10 Hz	21.84 m
Wind component W	(UTAH)		
Sonic temperature			

THE UNIVERSITY OF UTAH[™]

MECHANICAL ENGINEERING The BLLAST Experiment

IOPs

- IOP 1 15 June 2011
- IOP 2 19 June 2011
- IOP 3 20 June 2011
- IOP 4 24 June 2011
- IOP 5 25 June 2011
- IOP 6 26 June 2011
- IOP 7 27 June 2011
- IOP 8 30 June 2011
- IOP 9 01 July 2011
- IOP 10 02 July 2011
- IOP 11 05 July 2011

GRAW 0300 GRAW 0730

CRA 1100

CRA 1700 GRAW 2100 CRA 2300

305

GRAW1400

310

WD (°)

WD (°)

MECHANICAL ENGINEERING The BLLAST Experiment

$$H_{\cos}(t') = H_{\max} \cos\left(\frac{\pi t'}{2\tau_{\cos}}\right)$$

Application of Nadeau modell

Time from start of decay

₩_∗ • Deardorff Velocity

t'

U'

g

- **Z**_i Depth of ABL at t' = 0
- **F**_{Hsfc}• Kinematic Sensible Heat Flux
- θ_v Potential temperature
 - Perturbation from u mean vel.
 - Acceleration due to gravity

 $t_* = \frac{t' W_*}{Z_i}$

THE

UNIVERSITY

OF UTAH[™]

$$W_* = \left[\frac{g}{\theta_v} z_i F_{Hsfc}\right]^{1/3}$$

$$TKE = .5\left[\overline{(U')^2} + \overline{(V')^2} + \overline{(W')^2}\right]$$

UNIVERSITY OF UTAH[™]

TOGETHER WE REACH

THE UNIVERSITY OF UTAH[™]

MECHANICAL ENGINEERING The BLLAST Experiment

TOGETHER WE REACH

UNIVERSITY OF UTAH[™]

TOGETHER WE REACH

THE UNIVERSITY OF UTAH[™]

THE UNIVERSITY OF UTAH[™]

TOGETHER WE REACH

UNIVERSITY OF UTAH[™]

TOGETHER WE REACH

THE UNIVERSITY OF UTAH[™]

TOGETHER WE REACH

Summary

- Two decay regimes are observed in the roughness sub layer
- Mechanical Shear within the boundary layer varies as the transition nears requiring models to consider additional atmospheric conditions when calculating the mechanical production of TKE
- There is a possible delay of the start of the rapid decay period with increased mechanical production of TKE

MECHANICAL ENGINEERING The BLLAST Experiment

Questions?