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For eight levels within the lowest 2 m above ground level, dimensionless
gradients were calculated. The time periods for which the data is used were
carefully chosen, whereupon steady state conditions, horizontal homogeneity
and fair weather conditions were set as requirements. For unstable condi-
tions, it was not possible to state steady state conditions. Therefore only
stable conditions were considered. An universal function was fitted through
the dimensionless gradients of the upper four measurement heights for which
Monin-Obukhov similarity theory is applied. Deviations to the universal
function from KANSAS experiment were found. The turbulent fluxes were
detected as the measurement variables with the highest probability to be re-
sponsible for these deviations. Therefore constant ‘correction factors’ of 2.16
for the turbulent heat flux and 2.15 for the friction velocity were calculated.
These factors are unusable for the lowest measurement heights. It could be
shown that for these heights no similarity is given. A possible physical ex-
planation arises from the assessment of the temperature gradients, which are
too small in order to balance the decreasing measurement height.

1. Introduction

To describe the spreading of micro pollutants or to do weather forecasts, atmospheric
models are essential. The effort of these models is to describe the behaviour of atmo-
spheric parameters as exactly as possible. Therefore physical laws are necessary. But
since the knowledge of the governing physics of the atmosphere is insufficient to derive
laws based on first principles (Stull, 1988) other ways have to be found. One method
consists of similarity theories, which are based on the fact that boundary layer observa-
tions frequently show consistent and repeatable characteristics. They can then be used
to derive empirical relationships for the variables of interest. One example for such a
theory is the Monin-Obukhov (M-O) similarity theory. It is derived by dimensional anal-
ysis and describes the flux-profile relationship of momentum, heat, moisture and micro
pollutants in non neutral stratification. In the past years, this theory was already in-
tensively studied for measurement heights much higher than the aerodynamic roughness
length (Foken, 2006). The reason for this is that there is a vertical limitation of the M-O
similarity theory for these heights. As only two papers are published which analyse the
M-O similarity theory for heights close to the aerodynamic roughness length, there is no
real knowledge of the behaviour of this theory for lower measurement levels. Therefore
the original aim of this bachelor thesis was to do an experimental analysis of the M-O
similarity theory for temperature measurements within the first 2 m above ground level
(AGL). Since there were measurement heights in eight different levels in this 2 m over
grass, it is possible to assess M-O similarity theory for heights much higher than the
roughness length and close to it.
In a first section an overview of the mathematical and physical background is given.
After that the instrumentation and the measurement site are described, with special re-
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gard to the thermocouples used in the field experiment. In addition, the mesoscale wind
circulation for the area is described since it is used to filter the data for fair weather con-
ditions. In the next section, the implementation to the data is reproduced, whereupon
great importance is attached to the selection of the time periods. Since the universal
function for the M-O similarity theory for measurement heights much higher than the
aerodynamic roughness length is not consistent with the theoretical one, the focus had
to be deflected to the correction of the measured variables.

2. Mathematical and physical background

2.1. Atmospheric boundary layer

The atmospheric boundary layer (ABL) is the layer which is settled above the earth’s
surface with a varying depth from hundreds of meters to a few kilometres. It is defined
as that part of the troposphere that is directly influenced by the presence of the earth’s
surface and responds to surface forcing with a time-scale of about one hour or less (Stull,
1988). The air masses within this layer can be assumed as permanently turbulent and
therefore be described with the physics of turbulent flow (Etling, 2008). Garratt (1994)
compared the structure of the ABL with the two-dimensional turbulent boundary layer
generated in a wind tunnel. Mainly two regions have to be distinguished: the outer
(Ekman) region and the inner (surface) layer; whereas the inner layer is divided into the
inertial sublayer (Prandtl layer, see section 2.4) and the interfacial (roughness) layer.
Figure 2.1 gives an overview of these layers and their corresponding depths. The inner
layer is highly dependent on the surface characteristics and is not much affected by the
earth’s rotation. The outer region shows only little sensitivity towards the roughness
characteristics of the surface and Coriolis force is of importance there. The measurements
this bachelor thesis deals with were gathered up to a height of 9 m. This means all data
were sampled within the inner layer. The roughness layer describes the air masses just
above the roughness elements comprising the land surface. In these few millimetres just
above the surface, molecular diffusion is the main process for heat and mass exchange
between the air and the surface (Garratt, 1994).

2.2. Basic governing equations

There are five basic equations which form the basis for boundary layer meteorology:
i) equation of state, ii) conservation of mass, iii) conservation of momentum, iv) con-
servation of moisture and v) conservation of heat. Additionally to them equations for
conservation of scalar quantities such as pollutant concentration may be added (Stull,
1988). As a starting point for turbulent derivations, most often the equation for conser-
vation of momentum , also known as the Navier-Stokes equation, is used in its following
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Figure 2.1: Structure of the ABL for aerodynamically rough flow in neutrally stratified condi-
tions. The two main layers (outer (Ekman) layer and inner (surface) layer) are
labelled and corresponding depths are given. h is the depth of the ABL, z the height
and z0 is the aerodynamic roughness length. The Ekman layer is the outer region in
which the surface characteristics no longer have much influence role. The surface
layer consists of an inertial sublayer and an interfacial (roughness) sublayer. The
flow within these two lowest layers strongly depends on the surface structure (from
Garratt, 1994).

form (Stull, 1988):

∂Ui
∂t

+ Uj
∂Ui
∂xj

= −δi3g + fcεij3Uj −
1
ρ

∂p

∂xi
+ ν

∂2Ui
∂x2

j

. (2.1)

The equation is given in Einstein’s summation notation. It is an equation of motion and
gives the acceleration of the air in terms of the sum of several forces (Garratt, 1994).
The two terms on the left hand site (l.h.s.) represent the storage and the advection of
momentum, respectively. Terms for the vertically acting gravity, the influence of the
earth’s rotation, the pressure-gradient forces and the influence of viscous stress follow
on the right hand site (r.h.s.) (Stull, 1988). As an equation of motion, the Navier-
Stokes equation contains time and space derivatives. These derivatives require initial
and boundary conditions for an analytical solution. However, there are not sufficient
initial and boundary conditions to resolve all turbulent scales down to the smallest
eddies. For this reason the common procedure is to pick some cut-off eddy sizes below
which only the statistical effects of turbulence are included.
In order to get the equation for mean momentum in a turbulent flow, equation (2.1)
is statistically averaged over the smaller eddy sizes. This procedure contains several
steps which will be shortly commented and which are following the description from
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Stull (1988). In a first step, the Boussinesq approximation is done for the Navier-Stokes
equation. The Boussinesq approximation neglects density fluctuation in the pressure-
gradient force term (ρ ≈ ρ), but keeps them in the gravity term (g ≈ g + ρ′/ρg).
From the equation of state the relationship ρ′/ρ = −θ′v/θv can be derived. Therefore the
gravitational acceleration in equation (2.1) is usually expressed by g ≈ g−θ′v/θvg (Foken,
2006). In this term the temperature is expressed by the virtual potential temperature.
The potential temperature θ is used to correct the temperature for its change caused by
the pressure decrease with height. It is defined as the temperature a parcel of air would
have if it is brought adiabatically from its initial pressure p to a reference pressure p0,
typically 1000 hPa. Since moist air is less dense than dry air, the buoyancy caused by
moisture is important. To account for this effect, the virtual temperature Tv is used
(Foken, 2006). It is the temperature of dry air having the same pressure and density as
moist air at temperature T (Wyngaard, 2010):

Tv = T (1 + 0.61 · q), (2.2)

where q is the specific humidity which is defined as the mass ratio of water vapour
contained in a volume of air compared to its total mass. With equation (2.2) θv is
defined as:

θv = θ(1 + 0.61 · q). (2.3)

The next step in order to reach the equation for mean momentum in a turbulent flow
is the application of the Reynolds’ decomposition. This is a statistical method which
allows the expansion of variables into their mean and turbulent part (U = u+u′). Then
the whole equation is averaged and the Reynolds averaging rules are applied. At least,
the turbulent advection term has to be brought into its flux form and finally the equation
for the mean motion within a turbulent flow results in the following form:

∂ui
∂t

+ uj
∂ui
∂xj

= −δi,3g + fcεij3uj −
1
ρ

∂p

∂xi
+ ν

∂2ui
∂x2

j

−
∂u′iu

′
j

∂xj
. (2.4)

The comparison of this equation and equation (2.1) shows that they look very similar
except for the last term on the r.h.s.. This term represents the Reynolds stress on the
mean motion and can be described as the divergence of the turbulent momentum flux.
It is a new unknown term of second order. If an equation is constructed for this second-
order moment, further terms in the form of third-order moments will arise. It can be
generally expressed that an equation for the nth order moment contains terms of the
(n+1)th order. This means it is fundamentally impossible to close the set. This problem
is known as the closure problem and it implies that the higher-order moment terms must
be parametrized in terms of known quantities (Garratt, 1994). One parametrisation is
the K-theory which will be explained and used in section 2.5.
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2.3. Turbulent kinetic energy

The turbulent kinetic energy (TKE) is one of the most important variables in microme-
teorology because it is a measure of the intensity of turbulence and it is directly related
to the transport of momentum, heat and moisture through the ABL (Stull, 1988). The
mean kinetic energy per unit mass u2

i /2 of a turbulent flow can be divided in its mean
part u2

i /2 and its turbulent part u′2i /2 known as the turbulent kinetic energy e (Etling,
2008):

u2
i

2 = u2
i

2 + u′2i
2 (2.5)

e = u′2i
2 = 1

2(u′2 + v′2 + w′2), (2.6)

where u, v and w are the spatial components of the vector of momentum. The method
which is described here in order to reach the prognostic equation for turbulent kinetic
energy is taken from Etling (2008). Expression (2.5) shows that the equation of turbulent
kinetic energy can be derived by subtracting the kinetic energy of the mean flow u2

i /2
from the mean kinetic energy of a turbulent flow u2

i /2, as can be seen above. The
first term, u2

i /2, is derived by taking the Boussinesq approximation for equation (2.1),
multiply it with ui and taking the average. To get u2

i /2, equation (2.4) is also multiplied
with ui and again the average is taken. Finally the prognostic equation for turbulent
kinetic energy is reached:

∂ē

∂t
+ ∂

∂xj

{
ūj ē+ u′je− ν

∂ē

∂xj
+ 1
ρ̃
u′jp
′

}
︸ ︷︷ ︸

Divergence of energy fluxes

= −u′ju′i
∂ūj
∂xj

+ g

θv
u′iθ
′
v − ν

∂u′i
∂xj︸ ︷︷ ︸

Production and dissipitation of turbulent energy

, (2.7)

where the first term on l.h.s is the local change in time of the TKE. The terms which
are embraced as divergence of the energy fluxes are the advection of TKE, its transport,
the molecular diffusion of TKE and the pressure correlation term (Etling, 2008). These
terms neither contribute to the production nor to the dissipation of turbulent kinetic
energy, they are rather redistribution terms. On the contrary, the terms on the r.h.s.
are production and dissipation terms of the TKE equation. The first one describes the
mechanical production of TKE due to wind shear. The second one is called buoyancy
term and describes the consumption and production of TKE due to buoyancy. The last
term on the r.h.s is called viscous dissipation term and describes the consumption of
TKE by molecular friction. It is typically labelled with ε:

ε = ν
∂u′i
∂xk

. (2.8)

This term is always a loss term and describes the conversion of turbulent kinetic energy
to heat by molecular friction. It is the greatest for the smallest size eddies (Stull, 1988).
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In order to estimate the vertical behaviour of the TKE, i = 3 is set in further consid-
erations. The buoyancy term includes the vertical kinematic turbulent heat flux w′θ′v,
the gravitational acceleration g and the potential virtual temperature θv. The kinematic
turbulent heat flux is the heat flux H divided by a constant air density ρair and the
specific heat capacity of air at constant pressure cp.
With a first estimation of the dimensions of the different terms, the terms for the diver-
gence of energy fluxes on the l.h.s. of equation (2.6) can be neglected compared to the
production and dissipation terms on the r.h.s. (Foken, 2006). Therefore the main terms
influencing the turbulent kinetic energy evolution are the energy dissipation by molecu-
lar friction, the shear of the mean flow and the buoyancy forces. With the assumption of
horizontal homogeneity (∂/∂x = ∂/∂y = 0), neglecting subsidence (w = 0) and a mean
flow only in x-direction, equation (2.7) can be simplified to the following shape:

∂e

∂t
= g

θv
(w′θ′v)− (w′u′)∂u

∂z
− ε. (2.9)

In order to study the behaviour of TKE depending on the buoyancy force and wind
shear, the energy dissipation ε is neglected (Foken, 2006):

∂e

∂t
= g

θv
(w′θ′v)− (w′u′)∂u

∂z
. (2.10)

The ratio of the buoyancy term and the shear production therm is called Flux Richardson
number Rf:

Rf = −
g

θv
w′θ′v

−(w′u′)∂u
∂z

. (2.11)

Rf is a dimensionless parameter which can be used as a stability parameter. The shear
production of energy in the denominator is always positive and symbolises the mechani-
cal term. So Rf is positive for a negative buoyancy term and negative for a positive one.
As a result, Rf < 0 is valid for unstable stratification and Rf > 0 for stable conditions,
since a positive buoyancy term leads to production of turbulence whereas a negative
term dumps the turbulence. This relationship between the production and dissipation
of turbulence, respectively can be seen by means of the signs of these terms in equation
(2.10). But there is a special situation for 0 < Rf < 1. Equation (2.10) shows that in this
case the shear production term is bigger than the attenuation due to a negative buoyancy
term and there is a positive rate of TKE. That means that the turbulence kinetic energy
increases although the flow has a thermally stable stratification. The Richardson flux
number of one is called the critical Richardson flux number and represents the critical
value between production and consumption of turbulence.

2.4. The Prandtl layer

The Prandtl layer was already introduced in section 2.1 as the intertial sublayer and
therefore as the part of the ABL which depends strongly on the characteristics of the
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earth’s surface and where Coriolis forces can be neglected. The neglect of the influence
of the earth’s rotation is acceptable until a height of 50 m (Etling, 2008), since the
other terms of the Navier-Stokes equation (2.1) overbalance the Coriolis force. For the
consideration of the Prandtl layer it is further assumed that the force of viscous stress and
horizontal pressure gradient are balanced and can therefore be neglected. Furthermore,
steady state conditions (∂ui/∂t = 0) and horizontal homogeneity (∂/∂x = ∂/∂y = 0) are
assumed. With the implementation of all these assumptions on the horizontal component
(i = 3) of equation (2.4) and a flow in x-direction, the following equation is reached:

∂w′u′

∂z
= 0. (2.12)

This means that within the Prandtl layer, the turbulent flux of momentum w′u′ and
therefore the turbulent shear stress τ = −ρw′u′ can be assumed as constant with height
over a flat, homogeneous land surface. Considering the amount of assumptions which
have been made to reach this statement, it is only true for a layer of approximately 20
to 50 m above the earth’s surface (Etling, 2008). Therefore, an alternative definition for
the Prandtl layer is that the absolute value of the shear stress does not change more
than 10 % of its surface value (w′u′)0. The turbulent momentum flux at the surface is
usually expressed with the friction velocity u∗:

u∗ =
√
−(w′u′)0 =

√
τ0

ρ
. (2.13)

Beside the Richardson number (2.11), another stability parameter exists within this
layer which can be derived from the TKE equation, the Obukhov length L. It is usually
used as a scaling parameter. In order to reach this parameter, the buoyancy term of the
TKE equation (2.7) is multiplied by −κz/u3

∗ . Additionally, the surface values for the
turbulent fluxes are used because they are considered constant within the surface layer.
κ is the von Kármán constant. This leads to a dimensionless height which will further
labelled as ς (Stull, 1988):

ς = z

L
= −κzg(w′θ′v)0

θvu3
∗

. (2.14)

where the Obukhov length is given by:

L = − θvu
3
∗

κg(w′θ′v)0
. (2.15)

The Obukhov length can be interpreted as the height of an air column where the pro-
duction (L > 0) or dissipation (L < 0) of turbulent kinetic energy caused by buoyancy
is the same as the mechanical production of TKE per unit mass (Bernhardt, 1995). For
stable stratification, L is positive due to a positive heat flux ((w′θ′v)0 > 0), whereas the
Obukhov length gets negative for unstable stratification ((w′θ′v)0 < 0). For the neutral
case, L goes to infinite (Etling, 2008).
Figure 2.2 shows the evolution of the Obukhov length over a diurnal cycle with stable
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Figure 2.2: Typical diurnal evolution of the Obukhov length in the diurnal cycle. There are
positive values of L at night and negative ones during daytime (Stull, 1988).

stratification at night and convective conditions during daytime. It can be seen that
in a nocturnal stable layer the Obukhov length is positive and during daytime, positive
buoyancy processes cause negative values of L.

2.5. Vertical profile for neutral stratification

In order to define the vertical profiles of u and θ for neutral stratification, the K-theory
is necessary. This theory relates the turbulent flux and the vertical gradient of a variable
with a turbulent diffusion coefficient (Foken, 2006). For the turbulent momentum and
heat fluxes, this assumption leads to the equations:

w′u′ = −KM
∂u

∂z
(2.16)

w′θ′ = −KH
∂θ

∂z
, (2.17)

where KM and KH are the diffusion coefficient of momentum and heat, respectively.
In a neutral stratification there is the possibility to express the diffusion coefficient of
momentum on the basis of the mixing length theory (Etling, 2008):

KM = κ · z · u∗. (2.18)
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By inserting this definition into the equations (2.16) and (2.17) and considering the
relationship given by the turbulent Prandtl number Prt = KM/KH , the fluxes for mo-
mentum and temperature take the following form:

w′u′ = −κ · z · u∗
∂u

∂z
(2.19)

w′θ′ = − κ

Prt
· z · u∗

∂θ

∂z
. (2.20)

The integration of equation (2.19) for momentum from z0 until the height z with the
boundary condition u(z0) = 0 leads to the logarithmic wind profile:

u(z) = u∗
κ

ln
(
z

z0

)
. (2.21)

The integration constant z0 depends on the surface roughness and is therefore called
aerodynamic roughness length. The integration of equation (2.20) is done similarly by
using a roughness temperature z0T (Foken, 2006):

θ(z) = ϑ∗
κ

ln z

z0T
+ θ(z0T ). (2.22)

The scaling temperature ϑ∗ is defined as the negative ratio of the turbulent heat flux
w′θ′ to the friction velocity u∗:

ϑ∗ = −w
′θ′

u∗
. (2.23)

In theory, the roughness temperature is the height in which the surface temperature is
nearly reached. Since there are large temperature gradients near the surface, it is not
possible to find this height. For this reason, z0T is assumed as 10 % of the roughness
length z0 (Foken, 2006). Under neutral stratified conditions, the potential temperature
does not change with height and therefore the surface sensible turbulent heat flux (w′θ′)0
is zero. In equation (2.22) this leads to a constant potential temperature θ(z0T ) with
height which is consistent with the definition of neutral stratification.

2.6. Monin-Obukhov similarity theory

Figure 2.3 shows the wind profiles for neutral and non neutral stratifications. The typical
wind speeds for each stratification are plotted versus the logarithmic height. It can be
seen that the wind profiles for stable and unstable stratification do not follow the loga-
rithmic wind profile. This means equation (2.21) is not valid for non neutral conditions.
This led to the suggestion that the stability has to be inserted into the model for the
vertical wind profile (Liljequist and Cehak, 2007). For the vertical temperature profile,
an equivalent assumption applies. A model for these gradients was developed by the
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Figure 2.3: Mean wind at different levels for the non stable case, the neutral case and stable
stratification. It is visible that the profiles for stable and unstable stratification
diverge from the neutral case (from Oke, 1988).

need of a flux-gradient relationship for an atmosphere with temperature inhomogeneity.
This need is based on the existence of the essential influence of the stratification on
the development of turbulence which is obvious in the Richardson number. Monin and
Obukhov (1954) developed a flux-gradient relationship for the non neutral stratification
which is known as Monin-Obukov (M-O) similarity theory. Since the formula for the
wind and the temperature gradients in non neutral conditions cannot be derived directly
from the basic governing equations, they used dimensional analysis and the Buckingham
Pi Theorem to reach an empirical formulation.

2.6.1. Buckingham Pi Theorem

The main requirement for the use of the Buckingham Pi theorem is to find a list which
contains all governing parameters for the dependent variable (Wyngaard, 2010), in this
special case the temperature gradient. In this step two errors can be made. The first
one is that more variables are selected than necessary. So result will be that there is no
change of the other dimensionless groups with respect to the variable that is irrelevant.
The second error is that an important dependent variable is not included in the list of
governing parameters. The result will be that there is large scatter or no repeatable
patterns between the dimensionless groups (Stull, 1988).
With the initial point that all governing parameters m− 1 of a dependent variable are
found, and these have n dimensions, then it is possible to form m − n independent
dimensionless quantities out of the governing parameters. Additionally the theorem
predicts that these m−n independent dimensionless parameters are functionally related
(Wyngaard, 2010).
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2.6.2. M-O similarity Theory

In the case of stationary, horizontally homogeneous, thermally stratified flow in motion
at a given point in space, the governing parameters of the mean wind gradient are: i)
the measurement height z, ii) the friction velocity u∗ and iii) the Obukhov length L
(Wyngaard, 2010; Barenblatt and Monin, 1979). The boundary layer depth h is not
included since its influence on the turbulence at the surface-layer can be neglected. Fur-
thermore, molecular diffusivites and the roughness length z0 are excluded as governing
parameters. The exclusion of z0 as a dependent parameter leads to the restriction that
M-O similarity can only be applied for measurement heights z � z0 (Wyngaard, 2010).
This means that there are n = 2 dimensions and m = 3 + 1 dependent parameters:
three governing parameters and the mean wind gradient. Thus, there are m − n = 2
independent dimensionless quantities which are functionally related. As one of the two
independent dimensionless parameters a dimensionless gradient is formed and for the
other one, the dimensionless height ς is chosen which was already introduced in section
2.4. This leads to the formulation:

∂ū

∂z

κz

u∗
= ΦM(ς), (2.24)

where the dimensionless gradient of wind speed is functionally related to ς. Like the
Obukhov length and the Richardson number, the dimensionless height is a stability
parameter. It takes negative values for unstable stratification, positive ones for stable
conditions and is zero for neutral stratification. The von Kármán constant κ has to be
introduced into the equation in order to reach the logarithmic wind profile in neutral
conditions (Kramm and Herbert, 2009). This means that the von Kármán constant is
defined such that ΦM(0) = 1 (Busch, 1973). The dimensionless gradient for temperature
looks similar to equation (2.24):

∂θ

∂z

κ

Prt
z

ϑ∗
= ΦH(ς). (2.25)

Here the turbulent heat flux (w′T ′)0 has to be considered as fifth governing parameter
and the temperature as third dimension, which again leads to 5 − 3 = 2 dimensionless
independent variables. Since for neutral stratification equation (2.23) has to be reached,
also a value of ΦH(0) = 1 is predicted. To reach this, κ has to be factorized by the tur-
bulent Prandtl number in the dimensionless gradient of temperature (Foken and Skeib,
1983). The functions ΦM and ΦH are predicted to be universal. This means they are
the same in all locally homogeneous, quasi-steady surface layers (Wyngaard, 2010).
It is also possible to formulate the dimensionless gradient of moisture or a conserved
scalar constituent in a similar way as the dimensionless gradient of temperature (Foken,
2006).

11



2.6.3. State of research

The universal functions cannot be derived mathematically. This means there is the need
to determine them experimentally in the field. One of the most famous experiments
with respect to the M-O similarity theory is the KANSAS experiment. Businger et al.
(1971) analysed temperature and wind profiles over a wide range of stability conditions
with different expressions for ΦM . One of the formula used and confirmed by them was
the O’KEYPS-equation (Businger, 1988; Panofsky, 1963):

[ΦM(ς)]4 − γ · ς · [ΦM(ς)]3 = 1, (2.26)

where γ is an independent parameter which has to be estimated experimentally. For
unstable stratification (ς < 0), solutions of this formula have the form:

ΦM = (1 + γ1 · ς)−1/4. (2.27)

For the stable case (ς > 0), the universal functions develop mainly linear:

ΦM = 1 + γ2 · ς. (2.28)

γ1 and γ2 are independent parameters which have to be estimated experimentally. In
order to get the similar expressions for the universal function of temperature, one can
use the following relations (Foken, 2006):

ΦH ≈ Φ2
M for ς < 0 (2.29)

ΦH ≈ ΦM for ς ≥ 0 (2.30)

In the following, the turbulent Prandtl number will be included into the formulation
for the universal function ΦH . This means the relationship between the dimensionless
gradient for temperature and the universal function is:

∂T

∂z

κz

ϑ∗
=

Prt · (1 + γ1
z
L

)−1/2 for ς < 0
Prt · (1 + γ2

z
L

) for ς > 0
(2.31)

The procedure in order to reach the universal functions is illustrated on the data from
the KANSAS experiment. Figure 2.4 shows the dimensionless gradients of temperature
and wind speed plotted against ς. It can be seen that there is a functional relationship
between the dimensionless gradient plotted on the y-axis to the dimensionless height on
the x-axis. This functional relationship is generally expressed by equations (2.27) and
(2.28) for wind speed and equations (2.31) for temperature, respectively. This means the
functions are fitted by the method of least squares in the data points in order to find the
values for γ1 and γ2. The γ values are not the same for the universal function of wind
speed and temperature, although they are labelled equal here. The found formulations
of ΦM and ΦH are listed in table 2.1 and are labelled with ΦM,K,org and ΦH,K,org. In
order to get the von Kármán constant, an analysis for near neutral conditions (|ς| < 0.1)
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Figure 2.4: Dimensionless profiles of wind speed ΦM and temperature ΦH plotted against the
dimensionless height ς. Also the fitted curve is included and analysis of the near
neutral range |ς| < 0.1. Several interpolation formulas were used which all gives
excellent fits to the wind and temperature profiles (Businger et al., 1971).

was made, also plotted in figure 2.4. The value of κ is chosen so that ΦM(0) = 1 is
fulfilled. The same is done for the universal functions of temperature in order to find
the turbulent Prandtl number. With equation (2.31), Prt is reached for ΦH(0). In the
KANSAS experiment, κ = 0.35 and Prt = 0.74 were found.
Although ΦH and ΦM are called universal functions, there were remaining differences
in the γ-values which were predicted in various experiments. Additionally, different von
Kármán constants and turbulent Prandtl numbers were found. The range of κ, for
example, varies in literature from 0.35 to 0.41. Högström (1985) states that κ has to be
a constant with a value close to 0.4. This assumption is supported by laboratory wind
tunnel tests (Högström, 1985).
There are several papers which compare these various universal functions. Yaglom (1977)
was the first who corrected the universal functions to the same values of κ and Prt in
order to make them comparable. An important mention must be done for the work of
Högström (1988). He predicted that the variation in the von Kármán constant and the
turbulent Prandtl number are systematic deviations due to instrumental shortcomings
and do not reflect real differences. Therefore, an experiment was undertaken where great
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κ unstable stable
ΦM,K,org 0.35 (1− 15ς)−1/4 1 + 4.7ς
ΦH,K,org 0.74 · (1− 9ς)−1/2 0.74 · (1 + 6.3ς)
ΦM,K 0.4 (1− 19.3ς)−1/4 1 + 6.0ς
ΦH,K 0.95 · (1− 11.6ς)1/2 0.95 · (1 + 8.2ς)

Table 2.1: Universal functions from the KANSAS experiment ΦM,K,org,ΦH,K,org (Businger
et al., 1971) and the functions modified by Högström (1988) ΦM,K ,ΦH,K .

care was taken to remove any measuring errors. In this field study a von Kármán constant
of 0.4±0.01 and a turbulent Prandtl number of 0.95±0.04 were derived. In order to make
all expressions for ΦM and ΦH which appeared in literature comparable, he modified the
fluxes in accordance with the following assumptions: κ = 0.4, ΦH(0) = 0.95. This
modification was legitimated considering that incomplete correction of flow distortion
was made in the previous studies. This flow induced distortion causes systematic errors
in the fluxes (Högström, 1982; Wyngaard, 1981). Therefore the fluxes in the different
expressions of the universal functions were multiplied with ‘correction factors’ in order to
reach the above mentioned assumptions. The functions of the KANSAS experiment and
modified by Högström (1988) are listed in table 2.1. They will be further described as
ΦM,K and ΦH,K . Other functions which were modified by Högström (1988) are listed in
table A.4 and A.5. Högström (1996) summarized the possible reasons for the remaining
differences in the various formulations, after he homogenised all data sets with the before
mentioned ‘normalization procedure’:

1. Statistical uncertainty in the individual averaging time periods

2. Systematic instrumental inaccuracy not adequately corrected by his ‘correction
procedure’

3. Inadequate upwind fetch

4. Systematic errors due to inadequate sampling

5. Limitations of the M-O similarity theory

Errors caused by the first three categories were responsible for differences in the com-
pared functions in the order of ±10 %. In the last category, Högström (1996) counted
the limitation of the M-O similarity in very stable conditions. Foken (2006) called the
deviation of the M-O similarity for ς > 1 ‘z-less scaling’. In very stable conditions, the
turbulence becomes so sporadic that the size of the eddies is no longer dependent on
the distance of the measurement instrument to the earth’s surface. Thus, the universal
functions become almost constant. This assumption is included in figure 2.5 as ‘modi-
fied’ universal function. The figure also shows the typical development of ΦM and ΦH .
Wyngaard (2010) took a step further and predicted that there are also limitations for
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Figure 2.5: Typical developing of universal function for wind speed (bold line) and temperature
(thin line). The curve labelled with ‘modified’ reflect the assumption of an almost
constant universal function for very stable stratification (Foken, 2006).

the very unstable case. For ς < −1 there might be a height in which the direct effects
of shear production become unimportant compared to buoyant production. The reason
is that in the surface layer the buoyant production of TKE is essentially independent of
height, while the rate of shear production decreases with height.
It was already mentioned in section 2.6.2 that there is also a vertical limitation which
states that M-O similarity is only valid for z/z0 � 1 (Wyngaard, 2010). In this content,
Garratt (1980, 1983) investigated the dimensionless vertical profiles of wind and temper-
ature over a flat, tree covered terrain. He found a lower height limit z∗ for the universal
functions, where z∗ is the depth of the transition layer. This transition layer lays between
the intertial and the roughness layer. Within this layer, a modified function depending
on the dimensionless height and the transition layer depth should be considered.

3. Description of the experimental site and
instrumentation

All data used in this bachelor thesis were sampled during the BLLAST (Boundary Layer
Late Afternoon and Sunset Turbulence) campaign which took place from 14th June until
8th July 2011 in Lannemezan, France. The objective of this campaign was to reach
a better comprehension of the physical processes that control the late afternoon and
the early morning transition (ExPlans, 2011). However, this thesis does not deal with
these transition periods. The main reason is that these time periods come along with
fast changes of the atmospheric parameters whereas for M-O similarity theory steady
state conditions are assumed. Furthermore, there were measurement issues during the
transition times which will be described in section 3.2.1.
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Lannemezan
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Figure 3.1: Map of the topography around Lannemezan. The city of Lannemezan is located on
the northern foothill of the Pyrenees mountains on a plateau of about 200 km2. It
is visible that there are south-north oriented valleys at the south of Lannemezan.
The map is taken from openstreetmap. The scale is given in km.

3.1. The site

The area frame of the BLLAST field campaign described in this section is taken from
the experimental plans of the campaign (ExPlans, 2011). The field campaign took place
on the plateau of Lannemezan at the northern foothills of the Pyrenees mountains. The
plateau spans an area of about 200 km2 and is aligned with the south-north oriented
valleys which are located in the mountain range. Figure 3.1 shows a topographic map of
the area around Lannemezan in which its position in the north of the Pyrenees mountains
is indicated. The geographical configuration is responsible for a particular mesoscale
wind circulation under fair weather conditions. These low level wind patterns will be
used in the selection of adequate time periods in section 4.1. The description of the
wind system has been addressed by Jimenez and Cuxart (2012) through a numerical
simulation of this area.
Figure 3.2 shows the wind speed and direction from the 1st July at noon until next day
noon. The time is given in coordinated universal time (UTC). This data are taken as an
example for a day with clear skies and weak synoptic pressure gradients (Jimenez and
Cuxart, 2012). It can be seen that the main wind direction during daytime is north (50
to 300 ◦) whereas at night, wind with a southern component (140 to 200 ◦) dominates.
In figure 4.2a a histogram of the wind direction for this 24 hours time period is plotted.
The figure also points out the predominance of these two wind directions. Northern
wind comes from the inland of France. This means there has to be a formation of
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Figure 3.2: Wind speed and wind direction for 1st July noon to the next day noon. The vertical
grey lines indicate sunset and sunrise. This day is taken as an example for the
behaviour of the wind circulation without a synoptic influence. It can be seen that
the main wind direction during daytime is north (50 to 300 ◦), whereas at night the
wind is blowing from the south (140 to 200 ◦). A histogram of the wind direction
for this time period is given in figure 4.2a.

a temporary low pressure system above the Pyrenees during daytime. Shortly before
sunset, a rotation of the wind field of about 180 ◦ occurs together with low wind speeds,
followed by winds from the mountains into the lowlands. This mesoscale wind system is
related to the mountain-plain winds circulation and can be observed best in anticyclonic
weather in summer, when large-scale flows are weak (Martinez, 2011). The mountain-
plain winds are mainly driven by horizontal temperature differences between the air over
the Pyrenees and the air over the inland of France. The main reason for this is the area
of contact between a volume of air and the surface. This area is larger on slopes and so
the parcel of air can be heated more effectively. The warmer air above the mountains
compared to the lowlands causes a pressure gradient which results in winds blowing up
the outer slopes during the day. For Lannemezan, this means a wind from the north. At
night, the divergence of the long wave radiation flux cools the air close to the surface.
This causes a drainage wind from the mountains into the surrounding plains (Stull,
1988). Since the air columns in mountain regions are cooling faster due to their larger
area of contact to the surface, the down slope winds are additionally driven by pressure
gradients. For Lannemezan, this means wind with a southern component at night. A
sketch of the wind circulation for day and night can be seen in figure 3.3.
Beside this mesoscale circulation other characteristics of the wind speed and wind

directions can be observed. It can also be seen in figure 3.2 that the fluctuations of
the wind speed and direction during daytime are much larger than at night. These
fluctuations can be explained by the convective conditions during daytime. Air masses
above the surface are heated by the underlying ground and the air begins to rise. Since
figure 3.2 shows the situation for a cloudless day with high insolation, the buoyancy
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Figure 3.3: Sketch of the mesoscale wind system in the area of Lannemezan. During daytime
the air above the slopes heats more compared to the lowlands. This causes wind
from the lowlands during daytime. At night the air cools due to radiative emission
and therefore a flow into the lowlands is accelerated by gravity and pressure-gradient
forces.

is large, too. At night, the fluctuations are dumped by the predominance of stable
stratification. A point which is visible in the development of the wind direction at night
are changes in the main wind direction for short time periods. Examples for this are
the peaks in figure 3.2a around 0000 UTC. These irregularities in the wind direction
could be explained by the circumstance that there is one very big valley in the south
of Lannemezan and several smaller ones. This means, it is possible that most of the
drainage flows are allocated to the big valley, whereas flows from other valleys shortly
influences the mean flow. This irregularities of the mean wind direction at night will
also be considered in the selection of the time periods in section 4.1.
Beside this meso-scale consideration of the measurement site, it is also important to
assess the characteristics of the nearby environment of the sensors. During BLLAST
campaign there were two super sites which had a spatial distance of about 5 km. Super
site one served for the measurement of vertical structure and super site two for spatial
heterogeneity. In both sites the surface was mainly covered by heterogeneous vegetation:
grasslands, meadows, crops and forest. These two super sites were again divided into
several sub sites. All measurement data used in this bachelor thesis were sampled at the
sub site ‘micro scale surface heterogeneity’ of super site one. This site was settled west
of Lannemezan and had the shape of a square with a side length of about 150 m. The
location and the shape of the site can be seen in figure 3.4. It is also visible in this map
that there is a forest with a distance less than 200 m to the east of the measurement
site. The name of the site has already introduced that the surface is covered by small
bushes, grass and small puddles (Martinez et al., 2012). However, for the present work
it is assumed that the site is horizontal homogeneous.
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Figure 3.4: Map of the area around the measurement field. The micro scale heterogeneity site
is marked inside the map as a red rectangle and the areas covered with trees are
marked in green. It is visible that the distance to the forest to the east of the mea-
surement site is less than 200 m. That means for wind blowing from this direction
not necessarily a uniform fetch is given. The map is taken from openstreetmap ,
whereupon the measurement site is mapped with QGIS and its coordinates are taken
from a satellite picture of google earth.The scale is given in km.

3.2. Instrumentation

As already mentioned, the whole data which are used for the assessment of the M-O
similarity theory was sampled in a site which spans an area of about 2.25 km2. The data
are taken from an eddy covariance station, a 8−m tower, a portable station and a 2-m
mast.
The eddy covariance station was installed by the University of Bergen and was equipped
with a three dimensional sonic anemometer and with a Licor. For the calculation of the
fluxes it is necessary to have an instrument which is able to measure wind and tem-
perature fluctuations at high frequency. For this reason, the sonic anemometer and the
Licor measured the turbulent wind and temperature with a time resolution of 10 Hz.
The measurement height was 1.95 m AGL, wherefore the fluxes measured at the eddy
covariance station will be taken as the turbulent surface fluxes.
At the 9−m mast which was installed by the University of Bergen, several atmospheric
parameters were measured in three different heights. There were measurements of wind
speed and wind direction, temperature probes and humidity sensors. The atmospheric
parameter used in this bachelor thesis are the temperature and the wind speed and direc-
tion. These measurements were taken with cup anemometers and wind vanes at 2.1, 5.1
and 8.6 m AGL. The wind direction is used in order to state fair weather conditions and
to assess the fetch receptive to its potential disturbance by nearby roughness elements.
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(a) (b)

Figure 3.5: 2−m mast with the lower six thermocouples in different heights (a). It can be seen
that the surface is covered with bare soil, dry and green grass. (b) Overview of the
measurement devices at the micro scale heterogeneity site. On the right hand site
the 9−m tower with measurement instruments in three different levels is visible.
On the left site the portable station of the UIB is located. In the background a
60−m tower can be seen which was installed in the north western corner of the
site.

The wind speed is used to analyse the wind profile.
Additionally to this, wind measurements from the portable station of the University of
the Balearic Islands (UIB) is used. The wind speed and wind direction were measured
with a two dimensional sonic anemometer. Since no continuous measurement of this sta-
tion is available, the data are mainly used to verify the wind data from the 9−m mast.
Furthermore the portable station was equipped with a platinum resistance temperature
detector (PRT). Since the temperature measured by this probe was tested and verified
several times before the BLLAST field campaign, it will be taken as reference tempera-
ture in order to assess other temperature measurements. The whole measurement site
is shown in figure 3.5b.

3.2.1. Thermocouples

The focus of the data analysis is taken on the lowest 2 m of the ABL. This means, profile
measurements of the temperature within this height are essential. These measurements
were taken by a 2−m mast which was equipped by eight thermocouples. The thermo-
couples were installed on branches in different heights on the mast that are listed in table
3.1. Figure 3.5a shows a picture of the lower six thermocouples. It can be seen that the
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lowest thermocouples are installed within the vegetation. The thermocouples measured
the temperature with a sampling rate of 10 Hz, whereupon it is assumed that the real
resolution is about 1 Hz. During the field campaign there were problems referring to the

# 1 2 3 4 5 6 7 8
Height AGL \m 0.015 0.045 0.075 0.14 0.30 0.515 1.045 1.92

Table 3.1: Heights above ground level (AGL) for the eight thermocouples.

thermocouple measurements. Since the temperature profile is used for the calculation
of the dimensionless gradients, these problems have to be assessed in detail. In Figure
3.6 the temperatures measured by the thermocouples are compared to the temperature
sampled by the portable station. The temperatures are plotted over 24 hours from noon
to noon. It can be seen that around sunrise, the temperature measured by both sensors
increases at different rates. The thermocouples show a sudden drop up to 3 K shortly
after sunrise before increasing again two hours later. This anomaly in the behaviour of
the air temperature recorded by the thermocouples after sunrise was measured several
days along the campaign, but it was never reproduced by the portable station. The dif-
ferent measurement conditions between the two types of sensors can be a reason for this
discrepancy. The PRT of the portable station was mounted in a radiation shield, while
the thermocouples were installed without any protection. Therefore, the measurements
of the portable station have been considered as reference value in this bachelor thesis.
However, it can not be discarded errors under quiescent or weak wind conditions, when
a lack of ventilation could lead to erroneous reading inside the radiation shield. Since
this issue is a research topic itself it will not be further discussed in this present work.
The mean relative difference for one day between the two temperature probes is up to
16 % when the temperature measured by the PRT is taken as accepted value. In order
to find an alternative explanation for the difference it is necessary to understand the op-
erating mode of a thermocouple. Thermocouples consist of two conductors of different
materials. In order to measure the air temperature, the thermocouple has to be com-
posed of a reference junction and a measurement junction. If the measurement end of
the thermocouple is at a different temperature as the reference end, a voltage potential
(Uth) is created (CR1000, 2011). The effect that the conductor generates a voltage when
it is subjected to a thermal gradient is called the ‘Seebeck effect’. The generated voltage
is proportional to the temperature difference (∆T ) of the two junctions:

Uth = α ·∆T = α · (Twj − Tcj), (3.1)

where Tcj and Twj are the temperatures at the reference (cold junction) and at the
measurement junctions (warm junction), respectively. The constant of proportionality
α is the difference between the Seebeck coefficient of the two materials. The Seebeck
coefficient depends on the material of the conductors and has to be constant over the
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Figure 3.6: Temperatures of thermocouple #1 (—), #3 (—), #5 (—), #8 (—) and the tem-
perature probe measured at the portable station (PRT) (−−). The data are plotted
from noon of the 25th June until noon of the following day. During most of the
24 hours the discrepancy between the thermocouples and the temperature measured
by the portable station is small except for the time period shortly after sunrise.
The highest thermocouple (#8) has nearly the same values than the temperature
measured at the portable station. Since both probes are mounted approximately at
2 m height, the small discrepancy is interpreted as a sign for the accuracy of the
thermocouple measurement.

measured temperature range. With the output voltage Uth as the measured variable the
temperature at the reference junction has to be known to calculate the air temperature.
The thermocouples used in this experiment are of type E, so the two different materials
are chromel and constantan. Each of the eight thermocouples were connected to an ex-
tension cable which ends at a box with a plug for each one. A black plastic bag covered
the plugs to protect them from rain. The installation is shown in Figure 3.7.
The extension cables were special ones for thermocouples which consist of the same
material and extend the thermocouples without influencing the output voltage. That
means that the reference junction moves from the instrument to the other end of the
extension cable. The plugs for the sensors are connected to a multiplexer which is in
direct contact with the datalogger. Both the multiplexer and the datalogger are in an
enclosure box nearby the plugs. The cables from the plugs to the multiplexer are made
of different material than the thermocouples and therefore do not have an influence to
the thermal voltage. The multiplexer is, like the extension cables, made for thermocou-
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Figure 3.7: Sketch of the installation of the thermocouples in the field. Twj is the temperature at
the measurement junction. The temperature of the reference junction Tcj is taken
on the box with the plugs. These are connected to a multiplexer in a box nearby
were the reference temperature TR is measured.

ples and contains a resistance temperature device to measure the reference temperature
(TR). Since the voltage Uth is measured between the reference junction Tcj and the mea-
surement junction Twj, the temperature measured in the multiplexer could only be used
for the calculation of the air temperature if it was of same temperature as the reference
junction. As the reference temperature and the reference junction are in different boxes
there is the possibility of a temperature gradient between both. This gradient reaches
its maximum when there is a fast temperature change inside the black plastic bag. Fast
change in air temperature happens especially before sunrise and after sunset. If the
gradient gets higher and therefore the difference between TR and Tcj becomes larger,
there are two possible errors in the interpretation of the output voltage. The first one
is an overestimation of Uth and the second one an underestimation. A wrong estimation
of the voltage leads to the calculation of a wrong air temperature. Figure 3.8 includes
the temperature at the portable station, the temperature of the highest thermocouple
(Twj) and the reference temperature (TR) measured by the multiplexer.
This reference temperature TR was used to calculate the air temperature Twj. How-
ever, the ‘temperature valley’ which starts at approximately 0500 UTC leads to the
supposition that the reference temperature is not consistent with the temperature of
the reference junction Tcj. The reference junction is located at the plug inside a black
plastic bag (see figure 3.7). Since black is a good absorber for solar radiation, the air
temperature inside the plastic bag increases fast when sunbeams shine on it. Since the
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Figure 3.8: Temperatures of the highest thermocouple (#8)(—), the portable station (—) and
the reference temperature (TR)(—). The data are taken from the 25th June and is
plotted for 24 hours starting at noon. The vertical grey lines indicate the time of
sunset and sunrise.

reference temperature measurement occurs in an enclosure box, it could be that the air
inside the enclosure box needs more time to get heated by the sun. In this case, the
output voltage of the thermocouple (Uth) would be underestimated and therefore leads
to the calculation of a lower temperature (Twj) than the real value should be. Before
sunset the converse phenomena can be observed. The air inside the plastic bag cools
faster than the air inside the box. It comes to an overestimation of the output voltage
(Uth) and therefore to an overestimation of the air temperature (Twj).
In figure 3.9 the difference of thermocouple #8 and the temperature measured by the
portable station is plotted. If the temperature measured by the PRT is taken as the
true air temperature, the difference is consistent with the bias. This bias is estimated
for 15 minute averaged temperature data over ten days, the standard deviation is shown
as error bars in the plot. The large errors during transition times can clearly be seen
and are consistent with the expected overestimation around sunset and underestimation
after sunset. But also outside of these periods the bias never takes a value of zero. This
means there has to be a systematic error in the thermocouples.
Since the thermocouples are used for the calculation of the universal functions it is im-
portant to correct their measurements. To find a linear function for the correction of
the thermocouples, the temperature of the highest thermocouple is plotted versus the
temperature sampled by the portable station. Since the systematic error is expected to
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Figure 3.9: The absolute error of thermocouple #8 relative to the measurement of the portable
station is plotted against time. The error is estimated for 15 minute averaged
temperature data over ten days.

be not constant for transition periods, the times periods 1900 to 2300 UTC and 0500
to 0800 UTC are excluded. A linear regression is made in order to find a correction
function for the temperature data. The data points and the linear function are plotted
in figure 3.10. Since the value for R2 (see section A.1) is higher than 0.99, it is allowed to
use the function directly for correction (Foken, 2006). This means in the current work,
the thermocouple temperature data were corrected with:

T ′TC = 1.05 · TTC − 14.0, (3.2)

where T ′TC is the corrected and TTC the measured air temperature, respectively. The
correction function is defined for temperature in Kelvin. Since there is a difference in
the measurement height of approximately 10 cm between the highest thermocouple and
the portable station, it could be argued that the temperature differences between the
two sensors is related to the temperature gradient. There are two arguments against this
supposition. The first one is that the differences always have the same sign. This means,
that the thermocouples always show a higher temperature than the PRT, even during
daytime. The second can be taken from the change of temperature with height which is
estimated in section 4.2. The function there is used to extrapolate the temperature in
2 m heights. It was found, that the temperature gradients in this height are already so
small that the temperature difference between 1.92 m and 2 m can be neglected.
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Figure 3.10: Temperature measured by thermocouple #8 (ThermocoupleTC) versus the temper-
ature measured by the portable station (ThermocouplePRT)(*). A linear func-
tion is fitted through the data by the method of least squares. This function
T ′TC = 1.05 · TTC − 14.0 (—) is used to correct the thermocouple data

4. Implementation to the data

Since a lot of different variables are used for the calculation of the universal functions,
the data processing took a quite big effort in the implementation to the data. A rough
overview of the data handling shall be given here. The data processing was done with
the software MATLAB. The data were given in three different formates. The first one
was the data of the UIB, the second one came from the University of Bergen and the
last one from the University of Wageningen.
The data of the UIB are organized in single .dat files. Each file contains one minute data
of an atmospheric parameter for a time period of 24 hours. These time periods start at
noon of the day and contain data until at least 1159 UTC of the next day. Since data
were not available for full 24 hours for each day, the length of the columns containing
the data were not homogeneous. In order to simplify the further work with these data,
all files where rewritten in two files with continuous times. One of them contains the
data of the thermocouples and the other one the rest of the used parameters of the UIB.
Although the data of the 9−m mast and the data of the eddy covariance station were
both sampled by the University of Bergen, their data organisation differs. The reason
for this is that the eddy covariance data were processed by members of the University
of Wageningen who wanted to process the data of all eddy covariance stations installed
during BLLAST campaign in the same way.
The files for the eddy covariance station already contain calculated fluxes. Since for
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the calculation of the covariance between two variables the average of these variables is
necessary, three files with different averaging time periods are available. The averaging
periods are 5, 10 and 30 minutes.
The data of the 9−m mast are available as a continuous file with 1 minute averaged
data.

4.1. Selection of time periods

In the derivation of the universal functions, horizontal homogeneity and steady state are
applied. For this reason criteria has to be found to assume both. There are two require-
ments on the averaging time period. The first one is that steady-state can be assumed
and therefore the time intervals should have a minimum width in which the average
temperature does not change with time (∂θ̄/∂t = 0). Secondly, the time periods have to
be long enough to include all eddy sizes. For this reason Wyngaard (2010) introduced
a time scale of unsteadiness τu to estimate the minimum width of the averaging time
period. This parameter depends on the height of the sensor and the friction velocity. For
the calculation of this parameter, the raw data of the turbulent wind and temperature
are necessary which were not available for this bachelor thesis. Since in literature no
appropriate method is found to determine a time period of steadiness quantitatively, 15
and 30 minutes time periods are used and compared. This is done since the statistical
uncertainty in the individual averaging intervals were listed as one reason for the dif-
ferences between the universal functions through literature (see section 2.6.3, Högström
(1988)).
Another step to ensure steady state is the exclusion of the time periods of late after-
noon and early morning transitions. Since these transition periods are connected with
rapid time changes (ExPlans, 2011), steady state conditions can not be assumed. This
means that data are excluded from 1900 to 2300 UTC and 0500 to 0800 UTC. These
ranges seem unusual for transition periods. The reason why these periods are chosen
has its origin in the large differences between the temperature measured by the highest
thermocouple and the PRT around these time periods (see section 3.2.1).
To state horizontal homogeneity, Wyngaard (2010) introduced a length scale of inhomo-
geneity Lx:

Lx �
ū

u∗
z, (4.1)

where ū is the mean horizontal wind speed and z the height of the sensor. It can be used
to calculate the minimum area of uniform terrain in order to get an undisturbed fetch at
the measuring sensors. Since there are no detailed information about the measurement
site, it is only taken into account on the avoidance of flow disruption by forests. Since
the wind speed and vegetation differs with direction, it is important to estimate Lx in
respect to the wind direction. The data for the wind direction and speed are taken
from the lowest measurement height of the 9−m mast. Since the two dimensional sonic
anemometer is a more precise instrument, a comparison between the sonic anemometer
and the wind vane and cup anemometers is made. Therefore the wind speeds and the
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Figure 4.1: Comparison of wind speed and wind direction measured by a two dimensional sonic
anemometer (—,*), a cup anemometer (—) and a wind vane (*). No significant
differences are visible.

directions for the certain measurement instruments are plotted in the same figure against
time. Figure 4.1 shows that there are no significant differences between the wind data.
The classification of the different wind sectors due to their flow disturbing potential
is a procedure taken from Högström (1988). The map of the measuring area (figure
3.4) shows that there is at least one wind sector with very little distance to a forest.
This sector ranges from 50 to 130 ◦ where the distance to the trees is less than 200 m.
This means that data with fetch from this direction have to be excluded when they are
linked with large values of Lx. Figure 4.2b shows a histogram of the wind direction for
30 minute averaged data and additionally gives the range of different Lx. Since it is
assumed that much higher (�) means a value of ten, Lx is already multiplied with ten
in figure 4.2b and therefore can be directly related with the minimum distance which
is necessary to get an undisturbed fetch. The mean wind direction within a 30 minute
time period is calculated by transforming the angles given in degrees in a Cartesian
coordinate system. All considerations are also done for 15 minute time periods. It is
visible in figure 4.2b that there are no cases for the ‘small distance sector’ in which
Lx,m is larger than the distance to the disturbing trees. Therefore no data have to be
excluded due to disturbed fetch.
In the processing of the data from the BLLAST campaign, the assessment of the data on
the basis of the wind direction is used in a further way. To reduce the scatter in the final
calculation of the universal functions, only data are considered which was sampled under
fair weather conditions. Therefore time periods in which synoptic pressure gradients are
important are excluded. In order to identify these time periods, it is made use of the
local wind regime. This local wind regime, described in detail in section 3.1 implies
wind from north during daytime and wind from south at night. This means only data
are considered which was sampled when the wind was blowing from these directions.
Figure 4.2a shows the histogram of the wind direction and the range of the wind speed
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(a) (b)

Figure 4.2: (a) Wind rose for the 1st of July noon until the next day noon. Additional infor-
mation about the wind speed is given. It is visible that the main wind directions
are north and south and the average wind speed is about 2 m. (b) Histogram of the
wind speed for the whole time period. It contains additionally information about
the length scale of inhomogeneity. It is visible that wind from the east has a length
scale of inhomogeneity of less than 40 m.

for each direction for the 1st July as an example for a day with fair weather conditions.
The main wind directions north and south can be identified easily there. On the basis
of this day, the southern wind sector is chosen from 140 to 200 ◦ and the northern one
ranges from 300 to 50 ◦.
In order to estimate if a time period of 15 minutes and accordingly 30 minutes, can be
allocated to the mesoscale wind circulation, a ‘boolean method’ is used. In this method,
all one minute averaged data are classified into ‘good’ or ‘bad’. This means, if the wind
direction of this one minute averaged data are north during daytime or south at night,
the time period gets a value of one. Otherwise it gets a value of zero and it is assumed
that this time period is not consistent with the mesoscale wind system. This method is
used due to the differences of the wind direction fluctuations during daytime and night.
It was already mentioned in section 3.1 that the fluctuations in the wind directions are
high during daytime due to buoyancy effects. For this reason, it is assumed that the
wind belongs to the mesoscale system when at least two thirds of the particular averaging
time period (15 or 30 minutes) has a boolean value of one. For night, the situation was
different and therefore another system was used. Since the universal function is very
sensitive in stable conditions (Wyngaard, 2010), the first requirement to the time periods
is that all one minute averaged data within the selected averaging time period must have
a boolean value of one. The second requirement is based on the observation of temporary
changes in the flow direction at night in section 3.1. Time periods in which a peak in
the plot of the wind direction (figure 3.2a) is visible causes high scatter. For this reason,
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these time intervals are not considered in the final analysis. Therefore the standard
deviation of the 15 one minute averaged data of wind direction is calculated for the time
periods at night and a threshold of 20 ◦ is set for this standard deviation.

4.2. Temperature gradients

The gradients are only calculated for the time periods in which already fair weather
conditions are assumed. In order to calculate the temperature gradients, a second-order
polynomial in z is fitted through the levels of averaged temperature data (Högström,
1988):

T = A+B ln(z) + C(ln(z))2. (4.2)
The independent parameters A,B and C are determined by the method of least squares.
Usually the potential temperature θ has to be used to exclude temperature changes due
to the decrease of pressure with height. But since the BLLAST data are measured within
the lowest 2 m of the atmospheric boundary layer, where pressure changes with height
are negligible, the air temperature is used instead of the potential temperature (Foken,
2006).
This means the second-order polynomial has to be derived with eight levels of 15 minute
and accordingly 30 minute averages of air temperature. To reduce the error in the final
calculation of the dimensionless gradients, the adjusted coefficient of determination R2

adj

(see Appendix A.1) is used as a parameter for the goodness of the profiles. For the
calculation of the gradients only fits with a value higher than 0.96 for R2

adj are used.
This threshold is set because it delivers the smallest error in the final calculation of the
final universal function.
Figures 4.3a and 4.3b show the profiles of the half-hour averaged temperature data
for stable and unstable stratification and the fitted curves. The same plot is done for
logarithmic height in figures 4.3c and 4.3d. It can be seen that there are much more data
available for stable conditions than for unstable conditions and that the fitted curves fit
well to the data. The gradients are calculated by derivation of equation 4.2:

∂T

∂z
= B

z
+ 2C ln(z)

z
(4.3)

For the final analysis only gradients where considered which are consistent with height.
This means that in stable conditions, the gradient has to be positive for all heights and in
unstable conditions just the other way around. It should also be mentioned here that this
procedure could lead to the elimination of neutral conditions, because for gradients close
to zero sign changes caused by the model can happen easily. The gradients can be seen
in figures 4.4a and 4.4b plotted against the logarithmic height. For stable stratification
the range of the temperature for the lowest thermocouples is very large. There are even
time periods for which the gradients get smaller for the lowest height. This behaviour
of the gradients has an impact on the dimensionless gradients, too.
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Finally 177 15 minute and 96 half-an-hour time intervals are left for which steady state
conditions, horizontal homogeneity and fair weather conditions can be assumed and a
temperature gradient is available.

4.3. Universal functions

To derive the universal functions ΦH,B, the dimensionless gradients have to be plotted
against the dimensionless height ς. For the dimensionless height, the Obukhov length
is needed. Since the Obukhov length contains a buoyancy term (g/T v), the virtual
potential temperature should be used for its calculation. Additionally, Nicholls and
Smith (1982) predicted that the buoyancy heat flux w′T ′v has to be applied instead of
the turbulent heat flux. Usually the sonic anemometer measures approximately the
virtual temperature, but since the data were already processed, only the turbulent heat
flux is available. Commonly it is assumed that the buoyancy flux is approximately
10 − 20% larger than the heat flux (Foken, 2006). The error which can occur by this
assumption is estimated in section 5.2. Figure 4.5 shows the diurnal evolution of L. It
can be seen that all data points have the predicted sign compared to the theoretical
values in figure 2.2.
The dimensionless gradients are calculated with a von Kármán constant κ = 0.4.

In order to compare the final universal function with the universal functions found in
literature and modified by Högström (1988), the value for ΦH(0) has to be the Prandtl
number, set as Prt = 0.95 (see equation (2.31)).

4.4. Roughness length

The roughness length z0 is defined as the height in which the mean wind speed becomes
zero. It is also called aerodynamic roughness length, because its true value can only be
calculated from measurements of wind speed (Stull, 1988). For the calculation of the
roughness length, an extrapolation of the logarithmic wind profile in a neutral stratifi-
cation is necessary. For this reason a linear regression is used which can be derived from
the logarithmic wind profile:

ln(z)(u) = A+B · u. (4.4)

That means for u = 0 equation (4.4) yields ln(z(0)) = A. The theoretical method can
be seen in figure 4.6. For this reason wind profiles are calculated over a time period of
15 minutes every quarter hour. Also a calculation with 30 minute averaged time periods
took place. The following assumptions are used to guarantee that neutral conditions are
predominant and the calculated value of z0 is realistic:

1. neutral conditions are assumed, when the difference between the temperature of
two levels is less than 0.3 K
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2. z0 = exp(A) has to be bigger than zero

3. R2 (see Appendix A.1) has to be larger than 0.998

This leads to 96 profiles which can be used for the final calculation of the roughness
length. Figure 4.7 shows the mean wind speed for neutral conditions against logarithmic
height. A mean roughness length of z0 = 1.59 ± 0.89 cm is found. For 30 minute
averaged time periods,42 wind profiles are found and a mean roughness length of z0 =
1.48±0.73 cm is estimated. For the further considerations, the 15 minute averaged data
are used, because of the larger number of profiles.
Compared to tabulated values for grass plains, the calculated value of 1.59 cm fits well.
For example Etling (2008) set a range of 0.1 to 4 cm and Foken (2006) 0.005 to 0.2 m for
the roughness length over a surface covered by grass. The roughness length is useful to
identify the minimum height in which M-O similarity is applied by theory (see section
2.6.3).
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(a) (b)

(c) (d)

Figure 4.3: Profiles of the mean air temperature and fitted second-order polynomial for unstable
(left) and stable (right) stratification for half an hour averaged temperature data ((a)
and (b)). It can be seen that the fitted curves fit well to the measured data. Profiles
of the mean air temperature and fitted second-order polynomial against logarithmic
height ((c) and (d)).
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(a) (b)

Figure 4.4: Temperature gradients against the logarithmic height ((a) and (b)). For stable
stratification (right) it can be seen that the gradient of the lowest thermocouples
has a wide range and does not necessarily has the largest gradient. This behaviour
of the gradient for the lowest height does affect the dimensionless gradients which
will be seen in section 5.4.

Figure 4.5: Diurnal evolution of the Obukhov length. It can be seen that the sign and the values
fit to the expected theoretical ones which can be seen in figure 2.2. The vertical grey
line indicate sunrise and sunset.
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Figure 4.6: Theoretical experimental determination of the aerodynamic roughness length. The
mean wind speed is plotted versus logarithmic height and extrapolated towards the
y-axis. The intersection with the y-axis gives the logarithmic value of the roughness
length (Foken, 2006).

Figure 4.7: Wind profiles for neutral conditions against logarithmic height. The profiles are
calculated for 15 minute averaging time period. The mean roughness length z0 =
1.59± 0.89 cm.
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5. Results and Discussion

5.1. Comparison to theory

In section 2.6.3 it was already mentioned that the most advised formulations for the uni-
versal functions are the ones of the KANSAS experiment, modified by Högström (1988):
ΦH,K (see table 2.1). In the following, it is assumed that these functions are true and the
data will be assessed relatively to this formula. In addition κ = 0.4 and Prt = 0.95 are
considered as true constants. In a first step the dimensionless gradients are calculated
for every height and for both, 15 and 30 minute averages. Figure 5.1 shows the plots
of the dimensionless gradients against ς for all measurement heights by thermocouples
and both averaging periods, respectively. The plots also contain the fitted functions
ΦH,B, following equations (2.31) and ΦH,K . The formulations of ΦH,B are given in tables
A.1 and A.2 in the Appendix. The comparison of ΦH,B and ΦH,K for each height shows
that there are significant changes with respect to height. These changes differ for both
stability cases. It can also be seen that the differences between ΦH,B and ΦH,K have
the tendency to become smaller with height. The range of ς gets larger with increasing
height. The reason for this is mainly the implementation of the measurement height in
the formulation of the dimensionless height ς = z/L.
In section 2.6.3 it was already mentioned that a vertical limitation for the M-O similar-
ity theory exists for z/z0 much higher than one. For this reason the ratios between the
measurement heights and the roughness length are calculated and listed in table 5.1.
For z0, the found value of 1.59 cm (see section 4.4) is used. If it is assumed that ‘much
higher’ means a factor of greater than ten, the M-O similarity will only be applied for
thermocouples #5 to #8. Therefore all data points for the upper four thermocouples are
taken and plotted against ς then, common ΦH,B function for all heights is fitted. This
is done again for 15 and 30 minute averaging time, respectively. The formulations for
ΦH,B are listed in table 5.2. The uncertainty of the fitted functions is given by the root
mean squared error (see Appendix A.1). Figure 5.2 shows the plots of the dimensionless
gradients, ΦH,B and ΦH,K . The comparison of the two averaging time periods differs for
stable and unstable conditions. For stable stratification, there is no significant difference

# 1 2 3 4 5 6 7 8
z/z0 0.943 2.83 4.72 8.81 18.9 32.4 65.7 121

Table 5.1: Ratio between the sensor height to the roughness length.
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Figure 5.1: The dimensionless gradients for temperature (*) for every thermocouple level are
plotted against dimensionless height ς. On the left side the 15 minute averages
data are visible and on the right side the 30 minute averaged data. Also the fitted
universal functions for stable and unstable stratification ΦH,B are included (—), see
table A.1 and A.2) and the universal function of the KANSAS experiment ΦH,K

((−−), see table 2.1).

between the two formulations of ΦH,B. This is affirmed by the 95 % confidence intervals
that are listed in the Appendix in table A.3. It can be seen that the value for Prt and
the slope γ2 for both averaging time periods are included in the 95 % confidence intervals
of the other averaging time period. Therefore it is assumed that for stable stratification
a 15 minute averaging time period can be used without causing large errors.
For unstable conditions, the values of Prt and γ1 are not part of the other averaging time
period. In section 4.1 it was stated that the averaging time period has to be long enough
in order to include all eddy sizes. Since in a convective boundary layer large eddies are
possible, it could be that a time period of 15 minutes is too short to include all eddy
sizes. Furthermore it can be seen in figure 5.2a that the fit of ΦH,B for 15 minute averag-
ing time period takes smaller values of the dimensionless gradient than the experimental
data points for ς < −0.5. Since there is the requirement that ΦH(0) = Prt, the fit for
unstable stratification is forced to a value of 0.95 for neutral conditions. Table 5.3 gives
the formulations of the new fitted universal functions for both averaging time periods.
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Figure 5.1: continued

Now, the γ1 values are included in the 95 % confidence interval of the other averaging
time period and vice versa. Figures 5.3 shows the dimensionless gradients for unstable
stratification for both averaging time periods, the universal function without and with a
fixed boundary and the theoretical universal function. It can be seen that for 15 minute
averaging time period, the data points of the dimensionless gradients lie on the fitted
universal function with a fixed boundary. In contrast they do not for 30 minutes aver-
aging time period. Furthermore the uncertainty of the fit increases of about 3 and 7 %,
respectively.
In the following, the focus will be set on the consideration of stable conditions. For
this reason, in figure 5.4a only dimensionless gradients for stable stratification are plot-
ted. Again the plot also contains the fitted universal function ΦH,B and the one of the
KANSAS experiment ΦH,K . The value of the turbulent Prandtl number for the BLLAST
data is 0.955 ± 0.34 and therefore agrees well with the theoretical value of 0.95. The
slope γ2 of the linear function on the other hand is much smaller than the theoretical
one. This can be seen in the formulations of the universal functions and in figure 5.4a.
In fact, the slope of ΦH,B is just 22 % of the theoretical one. The comparison of ΦH,B

for stable stratification to various functions from literature in figure 5.4b shows that γ2
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Figure 5.1: continued

is clearly smaller than all the other slopes, although values of γ1 of 5.4 and 6 had been
found, too. This means there is no published universal function which shows a similar
behaviour for ΦH in stable stratification.
Since these deviations of the universal function from BLLAST campaign to the theoret-
ical value are existing, it is necessary to correct them before lower measurement heights
can be analysed. Therefore the error source has to be found and an adequate correction
method has to be implemented. For the calculation of the dimensionless heights different
measurement variables and assumptions are necessary. This leads to several potential
sources of error. These sources of error have to be found and estimated in order to find
a correction method for the dimensionless gradients.

5.2. Sources of error

The measurement variables which are used for the calculation of the dimensionless gra-
dients against ς are the temperature measurements in different heights and the turbulent
fluxes of momentum and heat. Additionally, horizontal homogeneity and steady state
conditions are assumed. Furthermore, the air temperature is used instead of the po-
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Figure 5.1: continued

tential and the virtual potential temperature. In a first step, these assumptions will be
analysed.
In section 5.1 the steady state conditions are already assessed. It was found that there is
no significant difference between the two averaging time periods for stable stratification.
Incomplete horizontal homogeneity is also excluded as origin of the large differences be-
tween the dimensionless gradients (see section 4.1). Nevertheless for this assumption it
should be kept in mind that the small heterogeneity is not considered and its influence
not assessed. In section 4.2 it was predicted that the use of the air temperature instead
of the potential temperature does not cause remarkable errors. It was already mentioned
in section 4.3 that for the calculation of the Obukhov length, the virtual temperature
and the buoyancy flux should be used instead of the air temperature and the turbulent
heat flux, (Högström, 1988). In order to assess the influence of this assumption, the
Obukhov length in its true definition is calculated for several time periods in which the
necessary data were available. The calculation of the buoyancy flux was done with the
expression (Wyngaard, 2010):

w′T ′v u w′T ′ + 0.61Tw′q′ (5.1)

where w′q′ is the turbulent latent heat flux. Comparison to the used dimensionless gra-
dients show that there is a difference of 2 % at the most. This is small compared to the
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(a) (b)

Figure 5.2: The dimensionless gradients (*) are plotted versus ς. This is done for the upper
four thermocouples and for averaging periods of 15 minutes (a) and 30 minutes (b).
Additionally the fitted universal function (−−) and ΦH,K (−−) are plotted.

Averaging Period Formulation RMSD % stratification
15 min 1.40 · (1− 20.9ς)−1/2 13.8 ς < 0
30 min 1.74 · (1− 36.9ς)−1/2 12.5 ς < 0
15 min 0.955 · (1 + 1.79ς) 24.8 ς ≥ 0
30 min 0.947 · (1 + 1.76ς) 25.3 ς ≥ 0

Table 5.2: Formulations for the universal function with data from BLLAST campaign. The
fourth upper thermocouples are used for the fit. The 95 % confidence intervals can
be found in the Appendix in table A.3

whole uncertainty of the universal function in stable stratification of 24.8 %. Therefore
it can be assumed that no significant error occurs by using T instead of T v and w′T ′

instead of w′T ′v. With these considerations it is supposed that non of the assumptions
is responsible for the deviation of the dimensionless gradients of BLLAST data to the
universal function of the KANSAS experiment.
For this reason, the measured variables have to be considered. The temperature measure-
ment of the thermocouples was already discussed in detail in section 3.2.1. A systematic
error was found which was already corrected. This means, the air temperature can be
ruled out as the measurement variable which is responsible for the error in the dimen-
sionless gradients.
As a result, the fluxes are left as possible source of error. In addition to the above made
exclusion procedure, there is another reason for doubting the measurement of the eddy
covariance station. Eddy covariance measurements are more complex than direct mea-
surements of temperature. Högström (1988) already predicted that errors due to flow
distortion (see section 2.6.3) causes deviations of the various universal functions. The
complexity of eddy covariance measurements is further illustrated in Lee et al. (2004).
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Averaging Period Formulation RMSD % stratification
15 min 0.950 · (1− 5.04ς)−1/2 17.0 ς < 0

(5.75, 4.33)
30 min 0.950 · (1− 4.92ς)−1/2 19.9 ς < 0

(6.97, 2.88)

Table 5.3: Fitted universal functions for unstable stratification. Prt is forced to a value of 0.95.
For γ1, the 95 % confidence intervals are listed in brackets. The uncertainty is given
as the root mean squared error.

(a) (b)

Figure 5.3: Dimensionless gradients for unstable stratification (*), universal function with fixed
boundary (−−), without fixed boundary (...) and the theoretical universal function
(−−) for 15 minutes (a) and 30 minutes (b) averaging time period.

The flux dependent variables of the dimensionless gradients are the turbulent heat flux
and the friction velocity. This means that both are affected when a systematic measure-
ment error exists. Since there is no eddy covariance station in the close-by environment,
there is no possibility to assess the fluxes by comparison. In a first step, the fluxes
are assessed qualitatively. This already happens in section 4.3 by showing that the
Obukhov length is following its diurnal cycle. Another parameter which is considered is
the behaviour of scaling temperature ϑ∗ against the gradients for the upper four ther-
mocouples. The temperature gradient is taken as an indicator for the stratification. In
unstable conditions, the temperature decreases with height and therefore the tempera-
ture gradient ∂T̄ /∂z is negative. In stable conditions, it is the other way around. Figure
5.5 shows the plot for this consideration. Since the same value of the fluxes is taken for
every height, ϑ∗ does not change with height. The variable which differs for the specific
heights is the gradient. It can be seen in the plot that the gradient becomes smaller with
height. This is consistent with the plots of the gradients against the logarithmic height
in figure 4.4. From the behaviour of the scaling temperature in unstable conditions it
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(a) (b)

Figure 5.4: The dimensionless gradients (*) for the upper four thermocouples are plotted against
ς and the universal functions (...) are fitted through the data (a). The plot also
includes the universal function of KANSAS experiment (−−). (b) ΦH,B in com-
parison with various formulations of ΦH . The plot contain the functions predicted
by Tschalikov (1968) (-.),Dyer (1974) (?),Gavrilov and Petrov (1981) (4) and Zil-
itinkevich and Tschalikov (1968) (—). These universal functions are taken from
Foken (2006). The formulations of the various universal functions can be found in
table A.4

is visible that ϑ∗ becomes larger with decreasing gradients. In very unstable conditions,
the turbulent heat flux takes large positive values due to buoyancy effects which are not
balanced by the friction velocity. For stable conditions, ϑ∗ seems to stay constant along
the temperature gradient. This means the negative turbulent heat flux is balanced by
the friction velocity.

5.3. Correction of the fluxes for stable stratification

The aim of the correction of the flux dependent variables is to reach their theoretical
value. These theoretical values are defined as the values which the fluxes must have so
that the fit through the corrected dimensionless gradients equals ΦH,K . In the following,
the measured flux-dependent variables are expressed with a tilde: w̃T ′, ũ∗, L̃ and ϑ̃∗,
to distinguish them from the theoretical values. Additionally, ΦH,K will be expressed as
ΦH and ΦH,B as Φ̃H .
It is assumed that constant ‘correction factors’ a and b exist. This means that the
systematic error of the eddy covariance station is supposed to be independent of other
atmospheric parameters. The theoretical values of the flux dependent variables can be
derived by their measured values and the ‘correction factors’:

w′T ′ = a · ˜w′T ′ (5.2)
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Figure 5.5: Scaling temperature versus the calculated temperature gradient for thermocouple
#5 (*), #6 (*), #7 (*) and #8 (*). Since ϑ∗ is the same for all heights, only the
gradients in the figure differ for the certain heights.

u∗ = b · ũ∗ (5.3)

For the scaling temperature it follows:

ϑ∗ = c · ϑ̃∗ (5.4)

where c = a/b. In a first conceptual consideration, it is assumed that w̃T ′, ũ∗ or ϑ̃∗
is already consistent with its theoretical value. These considerations are only made
graphically and no ‘correction factors’ are calculated.

5.3.1. Conceptual consideration

In the first conceptual consideration the measured turbulent heat flux is taken as con-
sistent with its theoretical value (a = 1). Figure 5.6 shows a sketch for the theoretical
universal functions ΦH and Φ̃H . In the figure also a data point for dimensionless gradi-
ent is plotted which lies on Φ̃H . Since the dimensionless gradient is inverse proportional
to the scaling temperature and the turbulent heat flux is taken as consistent with its
theoretical value, only a change in the friction velocity can influence the value for the
dimensionless gradient. The dimensionless gradients and u∗ are proportional to each
other. On the other hand the dimensionless height is inverse proportional to the friction
velocity to the power of three. It is shown in the figure 5.6 how a change of u∗ affects
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Figure 5.6: Conceptual consideration for the behaviour of Φ̃H for w′T ′ = ˜w′T ′. Is is visible
that the correction factor of ũ∗ has to be larger than one.

the data point. In case that the measured friction velocity is overestimated compared
to its real value it would not be possible for the data point to reach ΦH . Only if ũ∗ is
underestimated, the theoretical universal function can be reached. This means that b
must have a value larger than one.
In a next step, the conceptual consideration is done with the friction velocity taken as
consistent with its theoretical value (b = 1). Figure 5.7 shows a similar sketch as in
figure 5.6. It can be seen that w′T ′ is inverse proportional to the dimensionless gradient
and directly proportional to the dimensionless heigh. Therefore, the ‘correction value’ a
has to be smaller than one so that the corrected dimensionless gradient is able to reach
ΦH .
In the last conceptual consideration, it is assumed that the scaling temperature matches
its theoretical value (c = 1). This means the ratio of ˜w′T ′ and ũ∗ is taken as consistent
with their theoretical ratio (a = b). Again the consideration is done graphically in figure
5.8. Beside ΦH and Φ̃H , two data points are plotted into the figure. The first one is
settled on Φ̃H and the second one is plotted near the neutral range below the value of
ΦH(0). Since the dimensionless gradients are proportional to ϑ∗, there is no change for
the y-axis when ˜w′T ′ and ũ∗ are corrected with the same factor. However, the x-axis
is inverse proportional to the squared friction velocity. This means in case of a ‘correc-
tion factor’ of b > 1, the data points will be shrinked along the x-axis and in case of
0 < b < 1, the points are stretched along the x-axis. Therefore b has to be higher than

45



Figure 5.7: Conceptual consideration for the behaviour of Φ̃H for u∗ = ũ∗. It is visible that for
this approach only a correction factor a < 1 is possible.

one so that the dimensionless gradients can reach their theoretical value. Considering
the data points for near neutral conditions, it is visible that for all values which lie below
ΦH(0), it is not possible to reach the theoretical universal function.

5.3.2. Correction factors

In order to find the values for a and b, the following it is started with the following
equation:

∂T

∂z

κz

ϑ∗
= Prt · (1 +B

z

L
), (5.5)

where B is the slope of the theoretical universal function for the stable case (ς > 0)
and therefore has a value of 8.2 (see table 2.1). The requirement of equation (5.5)
is that the dimensionless gradient calculated with the theoretical values of the flux
dependent parameters has to be the same as the theoretical universal function. By
inserting expressions (5.3) and (5.4) into equation (5.5), the following expression can be
achieved:

∂T̄

∂z

κz

ϑ̃∗

1
c

= Prt +B · Prt ·
zκϑ̃∗

T̄ ũ∗

c

b2 . (5.6)
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Figure 5.8: Conceptual consideration for the behaviour of Φ̃H for ϑ∗ = ϑ̃∗. Is is visible that for
such an approach only the range of ς changes.

This equation can be simplified by inserting L̃ and Φ̃H , whereupon Φ̃H represents the
calculated dimensionless gradients:

Φ̃H = Prt · c+B · Prt
z

L̃

c2

b2 . (5.7)

This formulation is used to arrange a linear system of equations. Therefore a new
variable u ≡ c2/b2 is introduced. The linear system of equations has the following form:


Φ̃H,1
Φ̃H,2
. . .

Φ̃H,i

 =


Prt B · Prt · z

L̃1
Prt B · Prt · z

L̃2... ...
Prt B · Prt · zL̃i

 ·
(
c
u

)
,

where Φ̃H,1, Φ̃H,2, ...Φ̃H,i represent all data points of the dimensionless gradients and
L̃1, L̃2, ...L̃i their Obukhov lengths. This linear system of equations is solved for every
data point and delivers the averaged correction factors c = 1.05, b = 2.15 and a = 2.16.
The corrected dimensionless gradients are plotted in figure 5.9 and the corresponding
universal functions are listed in table 5.4. For both stratification cases it can be seen
that the correction of the universal function with the found values of a and b work

47



Figure 5.9: Corrected dimensionless gradients (*) for b = 2.15 and a = 2.16. The fitted univer-
sal function (...) fit perfectly to the theoretical one (−−) for stable stratification.
For unstable stratification no improvement is made.

Formulation RMSD % Stratification
1.4 · (1− 25.6ς)−1/2 13.8 ς < 0
0.950 + 7.82ς 24.7 ς > 0

Table 5.4: Corrected universal functions for variable fluxes. For stable stratification ΦH,K =
ΦH,B is reached. For unstable stratification no improvement is visible.

well for stable conditions. The fitted universal function equals the theoretical one. For
unstable conditions, no improvement is visible.
Since the ‘correction factor’ for the scaling temperature is approximately one, it can be
assumed that ϑ∗ is measured correctly. Following the third conceptual consideration
(section 5.3.1), this means that in order to reach ΦH , mainly a shrinking of the data
points along the x-axis took place. A consequence of this are very small values of ς.
With c taken as one, it is also possible to reach a and b analytically. Therefore both
universal functions are put into one equation. The validity of this equation is shown in
figure 5.8:

P̃rt · (1 + B̃
z

L̃
) = Prt · (1 +B

z

L
) (5.8)

where B̃ is the slope of the universal function from BLLAST campaign and has a value
of 1.79 (see table 5.2). With the assumption that P̃rt ≈ Prt, the expression

b =
√
B

B̃
(5.9)

can be derived. This leads to a ‘correction factor’ of 2.14 for a and b. This result is very
similar to the ‘correction factors’ predicted above.
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5.4. Lower thermocouples

In figure 5.1 also the dimensionless gradients for the lowest thermocouples for which the
M-O similarity theory does not apply are plotted. It can be seen in the plots for the
measurement heights of #1 to #3 that most of the data points for stable stratification
lie below the turbulent Prandtl number (ΦH(0)). This means the correction method
implemented above is not usable for these heights. This agrees with the vertical limi-
tation for the M-O similarity theory (see section 2.6.3). For the measurement height of
thermocouples #4 the situation is not that clear. There approximately one half of the
dimensionless gradients lie below a value of 0.95, the other above. Since the ratio of
the measurement height to the roughness length has a value of 8.81, it can already be
interpreted as ‘much higher’ than z0 and therefore seen as a transition case.
In order to find an explanation why the dimensionless gradients of the M-O similar-
ity theory does not work for the lowest thermocouples, equation 2.25 is considered. It
can be seen that in this formulation only the temperature gradient and z changes for
the certain measurement heights. Since for thermocouples #1 to #3 most of the data
points lie below the theoretical value, their dimensionless gradients are underestimated.
To have similarity, ∂T/∂z and z have to balance each other. For the lowest heights this
means that the gradient is too small to balance the decreasing value of z. A temperature
flux which acts against the temperature gradient is the thermal diffusivity, since it can
be described with Fick’s laws of diffusion. Furthermore, this is a variable which is not
included into the list of governing parameters in section 2.6.2 due to the requirement
z � z0. In order to make a conclusion about the influence of thermal diffusivity on the
temperature gradient, a quantitatively consideration is necessary. Besides, radiative and
humidity effects can not be excluded (Gopalakrishnan et al., 1998).

6. Conclusions

Before the data of the thermocouples could be used for the calculation of the dimen-
sionless gradients of temperature, their quality was assessed. It was found that there is
a small systematic error for the temperature measurements outside transition periods
which could be corrected considering the measurements form the portable station as
valid. The time periods which were used for the assessment of M-O similarity theory
were carefully chosen. Therefore horizontal homogeneity, steady state conditions and
fair weather conditions were applied. To state fair weather conditions, account is made
of the mesoscale wind system of the measurement area. In order to assume horizontal
homogeneity, attention is paid to an undisturbed fetch, whereupon the small hetero-
geneity was not considered. Since no adequate method was found to state steady state
conditions, the calculations of the dimensionless gradients were made for 15 minutes and
30 minutes averaging time periods. The comparison of the universal functions for the
upper four thermocouples showed no significant difference between the two averaging
time periods for stable stratification. For unstable stratification, the formulas differed.
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By forcing the turbulent Prandtl number to a value of 0.95, it is possible to get rid of
this difference, but the uncertainties in the fitting curves increase.
The comparison of the dimensionless gradients for stable stratification to the universal
function from KANSAS experiment which was modified by Högström (1988) showed
that there are large differences in the slope of the linear functions. The slope of the
universal function from BLLAST campaign represents 22 % of the theoretical one.
The flux dependent variables were identified as parameters with the largest probability
to be responsible for this difference. The calculation of constant ‘correction factors’ led
to values of 2.16 for the turbulent heat flux and 2.15 for the friction velocity. Similar
results could be derived analytically. Thus, in order to follow M-O similarity theory
under stable conditions, it must be assumed that the eddy covariance station measures
only half of the real turbulent fluxes at night. Furthermore, it was showed that the
correction is unusable for the lowest measurement heights.
For thermocouples #1 to #3 no similarity was given which is consistent with literature.
The measurement height #4 could be considered as a transition case, considering the
ratio of the measurement height and the roughness length. A physical explanation of
the deviations of the lowest thermocouples from the M-O similarity theory could be the
influence of thermal diffusivity and radiative and humidity effects.

7. Outlook

It was not possible to assess the M-O similarity for unstable stratification because no ad-
equate averaging time period could be found. For this reason, only the fluxes for stable
stratification were corrected. It was shown that the predicted correction factors are not
usable for both stratifications. Therefore effort should be put into the derivation of an
adequate averaging time period for unstable stratifications for which ‘correction factors’
has to be derived, too. If these correction factors show large differences to the ones
predicted for stable stratification, it should be checked if there could be a dependence of
these factors on an other atmospheric parameter. In this case, it should be possible to
develop a correction function which is valid for the whole stability range. In any case,
the correction of the fluxes has to be verified. Its possible sources of error can occur in
the data processing and in the measurement itself. So it is necessary to take a look into
the data processing of the fluxes and to do an intensive literature research.
After a satisfying correction method is predicted for both stability ranges, it would be
further interesting to investigate the dimensionless gradients for the lower measurement
heights for stable and unstable stratification, respectively. In a first analysis it should
be checked if a second order polynomial in z direction is the right strategy to interpolate
the temperature profiles in this layer. If the results are consistent with the dimensionless
gradients shown in this bachelor thesis, two main variables have to be assessed referring
their influence on the flux-profile relationship for lower measurement heights. These two
variables are molecular diffusivity and the roughness length z0. Both were excluded as
governing parameters in the derivation of the M-O similarity theory, because z � z0
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was required. But since this is not given for the lowest measurement heights, the neglect
is not valid any more. If both were detected as governing parameters, this would led to
seven governing parameters and three dimensions. So a modified M-O similarity theory
has to be found which includes m− n = 4 independent parameters. In order to check if
the molecular diffusivity comes into consideration as governing parameter, it would be
helpful to calculate its value and compare it to the order of magnitude of the turbulent
heat flux.
To develop a modified M-O similarity theory, a second measurement campaign with the
same set up should be performed. The reasons for this is that at first the repeatability of
the theory has to be checked and secondly it should be shown that the installation prob-
lems of the thermocouples are not responsible for the deviations and were successfully
corrected in this bachelor thesis.
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A. Appendix

A.1. Statistics

In the bachelor thesis, the root mean squared error RMSD, R2 and R2
adj are used to

describe the fitted functions statistically. These statistic methods consist mainly of the
total sum of squares TSS and the residual sum of squared ESS and their mean values.

TSS =
N∑
i=1

(yi − yi)2

ESS =
N∑
i=1

(yi − ŷi)2

where yi is the measured variable, ŷx,i its value in the model, y the mean value of all
measured variables and N the number of variables. The total mean squares TMS and
the residual mean squares EMS are defined as:

TMS = 1
N − p

TSS

EMS = 1
N
ESS

where p is the degree of the model. A linear function is a model of first order whereas
the model used for the calculation of the temperature profiles in section 4.2 is of second
order. The root mean squared error RMSD is used as the uncertainty in percent for
the fitted universal functions. It is defined as the extracted root of the residual mean
square EMS:

RMSD =
√
ESS

Since there is no scaling of this error, it is only used here to compare the uncertainty of
the fitted universal functions among each other.
The coefficient of multiple determination R2 is defined as:

R2 = TSS − ESS
TSS

It is used for the estimation of the goodness of the correction function for the temperature
measured by the thermocouples. It takes values between zero and one, whereupon a
value of one means perfect fit. R2

adj is used in order to estimate the goodness of the
fitted temperature gradients. It is calculated with

R2
adj = (TMS − EMS)/TSS

In contrast to R2 it can also take negative values, but the interpretation is similar. This
means a value of one for R2

adj means that the data fit perfectly to the given second-order
polynomial (McPherson, 1990).
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A.2. Several universal functions

15 minutes average RMSD \% 30 minutes average RMSD \%
#1 0.767− 94.5ς 16.0 0.75− 87.95ς 15.3

(0.712, 0.821) (-109, -79.8) (0.678, 0.825) (-108, -68.2)
#2 0.787− 8.66ς 12.3 0.772− 7.22ς 10.0

(0.745, 0.829) (-12.5, -4.87) (0.724, 0.82) (-11.5, -2.90)
#3 0.796 + 1.175ς 11.9 0.7814 + 1.832ς 9.37

(0.756, 0.837) (-1.02, 3.37) (0.736, 0.826) (-0.587, 4.25)
#4 0.807 + 4.80ς 12.7 0.793 + 5.02ς 10.7

(0.764, 0.851) (3.55, 6.05) (0.0536, 0.226) (-43.9, -31.2)
#5 0.821 + 4.62ς 15.3 0.807 + 4.64ς 14.5

(0.769, 0.873) (3.91, 5.32) (0.738, 0.877) (3.71, 5.57)
#6 0.831 + 3.67ς 17.8 0.817 + 3.653ς 17.8

(0.771, 0.892) (3.19, 4.15) (0.732, 0.903) (2.98, 4.32)
#7 0.8442 + 2.44ς 21.6 0.817 + 2.43ς 17.8

(0.771, 0.918) (2.16, 2.73) (0.732, 0.903) (2.98, 4.32)
#8 0.855 + 1.63ς 25.2 0.842 + 1.60ς 27.0

(0.770, 0.941) (1.45, 1.81) (0.712, 0.972) (1.33, 1.87)

Table A.1: Universal functions from BLLAST campaign for the stable case, κ = 0.4. Addition-
ally the table contains the 95 % confidence intervals in brackets. RMSD gives the
uncertainty in percent. The functions given in this table has the form: Prt+γ2·Prt·ς.
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15 minutes average RMSD \% 30 minutes average RMSD \%
#1 (0.0791− 190ς)−1/2 29.8 (0.106− 157ς)−1/2 24.8

(0.0133, 0.145) (-235, -145) (-0.00323, 0.215) (-235, -78.6)
#2 (0.1003− 83.6ς)−1/2 22.6 (0.126− 71.6ς)−1/2 18.2

(0.0274, 0.178) (-101, -66.4) (0.00804, 0.243) (-101, -42.4)
#3 (0.117− 57.9ς)−1/2 19.4 (0.136− 50.6ς)−1/2 15.3

(0.0374, 0.197) (-68.8, -47.0) (0.0160, 0.256) (-68.9, -32.3)
#4 (0.140− 37.6ς)−1/2 15.3 (0.149− 33.8ς)−1/2 11.9

(0.0536, 0.226) (-43.9, -31.2) (0.0281, 0.271) (-44.0, -23.5)
#5 (0.177− 22.7ς)−1/2 12.2 (0.165− 21.3ς)−1/2 8.52

(0.0796, 0.275) (-26.1, -19.4) (0.0412, 0.289) (-26.4, -16.2)
#6 (0.214− 16.3ς)−1/2 10.7 (0.174− 15.8ς)−1/2 7.31

(0.0981, 0.329) (-18.7, -14.0) (0.0332, 0.315) (-19.3, -12.26)
#7 (0.280− 11.0ς)−1/2 10.6 (0.174− 15.8ς)−1/2 7.31

(0.100, 0.459) (-12.8, -9.21) (0.0332, 0.315) (-19.3, -12.26)
#8 (0.362− 8.19ς)−1/2 12.3 (0.506− 8.76ς)−1/2 10.4

(0.0360, 0.689) (-9.98, -6.41) (-0.309, 0.609) (-12.2, -5.19)

Table A.2: Universal functions from BLLAST campaign for the unstable case, κ = 0.4. Addi-
tionally the table contains the 95 % confidence intervals in brackets. RMSD gives
the uncertainty in percent. The formulation of the universal functions in this table
follow the form: (1 · Pr−2

t − γ1 · Pr−2
t · ς)−1/2.

Averaging Period Formulation RMSD % stratification
15 min 1.40(1− 20.9ς)−1/2 13.8 ς < 0

(1.42, 1.41) (-23.0, -18.7)
30 min 1.74(1− 36.9ς)−1/2 12.5 ς < 0

(2.14, 1.501) (-43.2, -29.4)
15 min 0.955 · (1 + 1.79ς) 24.8 ς ≥ 0

(0.920, 0.990) (1.65, 1.93)
30 min 0.947 · (1 + 1.76ς) 25.3 ς ≥ 0

(0.897, 0.996) (1.58, 1.95)

Table A.3: Universal functions for thermocouples #5 to #8 for both time periods. Additionally
the 95 % confidence intervals are given in brackets. RMSD is used as uncertainty
in percent.
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Author κoriginal ΦH ΦHmodified Comments
Tschalikov (1968) 0.4 1 + 5.71ς - ς > 0.04
Zilitinkevich and Chalikov (1968) 0.43 1 + 9.9ς 0.95 + 8.9ς
Businger et al. (1971) 0.35 0.74 + 4.7ς 0.95 + 7.8ς
Dyer (1974) 0.41 1 + 5ς 0.95 + 4.5ς
Gavrilov and Petrov (1981) 0.4 0.9 + 6ς -

Table A.4: Various universal functions which appears in the literature for stable stratification.
The formulation are modified by Högström (1988) and are calculated for Prt = 0.95.
The table is taken from Foken (2006).

Author κoriginal ΦH ΦHmodified Comments
(Zilitinkevich and Chalikov, 1968) 0.43 1 + 1.45ς 0.95 + 1.31ς −0.15 < ς0

0.41(−ς)−1/3 0.40(−ς)−1/3 −1.2 < ς − 0.15
(Businger et al., 1971) 0.35 0.74(1− 9ς)−1/2 0.95(1− 11.6ς)−1/2

(Dyer, 1974) 0.41 (1− 16ς)−1/2 0.95(1− 15.2ς)−1/2

Table A.5: Various universal functions which appears in the literature for unstable stratifi-
cation. The formulation are modified by Högström (1988) and are calculated for
Prt = 0.95. The table is taken from (Foken, 2006).
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