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Abstract

Using both observed and modelled datasets from the 2011 Boundary Layer

Late Afternoon and Sunset Turbulence (BLLAST) campaign, the influence

of large-scale forcings and surface heterogeneity is investigated for ten out of

twelve Intensive Observational Periods (IOPs) in order to assist and facilitate

future research on this unique data set. This includes a categorisation of

the individual IOPs according to the importance of horizontal advection and

subsidence, as well as the sensitivity of the Boundary Layer (BL) development

during those days to the time of initialisation. This is accomplished through

the use of the Chemistry Land-surface Atmosphere Soil Slab (CLASS) model

which is based on Mixed Layer theory.

The study shows that neglecting large-scale forcings leads to considerable

deviations between observed and modelled key parameters, such as BL height

or average values of temperature and humidity, in nearly all of the investi-

gated IOPs. In this context, only the simulations for IOP08 provided com-

parable results. In addition, for six out of the twelve IOPs, meso-scale simu-

lations with MesoNH are available, with a horizontal resolution of 400 m. It

is found that upon incorporation of those large-scale forcings from MesoNH,

the Mixed Layer Model (MLM) simulations for IOPs 05 & 06 capture the

observed trends closely. Furthermore, a novel concept of an averaging “box”

domain is introduced for the treatment of surface heterogeneity in MLM the-

ory. Using this concept, it is discovered that the BLLAST campaign area
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exhibits a “MLM blending length-scale” of approximately 5 km. Horizontally

averaged surface fluxes on smaller scales depend on both the chosen domain

size and the selected location (e.g. Site #1 or Site #2), whereby areal flux

averages on larger scales become independent on the domain size.
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MesoNH dataset from Maria Antonia Jiménez Cortes at the Universitat de les

Illes Balears. It was a fundamental building block of this work, and helped

to kick-start the main ideas of this thesis. Once the “ball was rolling”,

v



vi

the comprehensive surface heat flux maps from Oscar Hartogenesis at the

Wageningen University & Research Centre allowed for the fulfilment of Ex-

periments 1-2, and the further expansion into Experiment 3. Both these

datasets have been invaluable tools in the construction of my thesis. And in

general, the BLLAST field experiment itself was made possible thanks to the

contribution of several institutions and supports : INSU-CNRS (Institut Na-

tional des Sciences de l’Univers, Centre national de la Recherche Scientifique,
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1 Introduction

Considering that every person spends the vast majority of their lives in the

Atmospheric Boundary Layer (BL), the study of how it works is particularly

important. BL properties, such as height, can have far-reaching impacts on

air quality indices, cloud conditions, and surface temperature and humidity.

Convective BL development under “textbook” conditions (Stull 1988, Vilà-

Guerau de Arellano et al. 2015) is relatively well understood, however there

do exist forcings for which direct observation is difficult to obtain. These

include advections of heat and moisture, as well as large-scale vertical motion

of the atmosphere above the BL, all of which entail challenging measurement

regimes. And though processes acting over any one individual type of surface

are generally understood, measuring how these processes evolve over real-

world patchwork land use can be a logistical feat.

These forcings can, instead be studied through the use of numerical mod-

els, such as Direct Numerical Simulations (DNSs) (e.g. Rai & Moin 1993,

Moin & Mahesh 1998), Large-Eddy Simulations (LESs) (e.g. Moeng 1984,

Moeng & Sullivan 2015), and Mixed Layer Models (MLMs) (e.g. Tennekes

1973, Tennekes & Driedonks 1981), all having varying degrees of complex-

ity. And such modelling is nothing new in meteorology. LESs have been

around since the late 1960’s, albeit with limited grid size (Moeng & Sullivan

2015, p.232). Since then, tremendous progress in computational capability

has allowed for much finer resolutions. But though the capability is there,

1
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limitations still exist. LESs can still take significant amounts of time, as

they are crunching numbers in a three dimensional space, and even then,

only focus computations on the most dominant scales: the “Large Eddies”.

Smaller scale turbulent processes, must still be parametrized. Even with

these parametrizations, in order to properly utilize them, simulations must

be run on powerful machines, the likes of which may not be accessible to some

atmospheric scientists. Nowadays, however, access to a personal computer

(a veritable supercomputer by 1960’s standards) is a necessity for daily life.

It is on these machines that MLMs can easily be run.

Though both LESs and MLMs are based on laws of conservation of energy,

mass and momentum (Moeng & Sullivan 2015, Vilà-Guerau de Arellano et al.

2015, p.24), the implementation of these laws differ. Whereas LESs allow for

horizontal gradients to develop and interact, MLMs forego computations of

these interior turbulent processes, focusing instead on processes occurring at

the top and bottom BL boundaries. A simplified analogy would be adding

cream to a cup of coffee. An LES would describe some of the complicated

whirls and swirls one sees as pouring the cream, before it eventually spreads

to all parts of the mug. Alternatively, a MLM merely recognizes that cream

was added, and assumes the pourer is stirring. Though this analogy is an

over -simplification of MLMs dynamics (in actuality the processes are occur-

ring simultaneously at the top and bottom of “the mug” and are turbulent

fluxes of “cream” rather than an advection like “pouring”), the core concep-

tual difference is valid. The end result of changing the overall concentration

of coffee in the mug is the same, but the MLM was computationally cheaper.

However, these savings come with the caveat of only being valid under well-

developed convective conditions (i.e. stirring, albeit not mechanical, as with

a spoon).

The Chemistry Land-surface Atmosphere Soil Slab (CLASS) model (Vilà-

Guerau de Arellano et al. 2015) is based upon MLM theory. The decrease in
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computational requirements comes by acting only on one spatial dimension,

the vertical. This is achieved by assuming a well-mixed (stirred), homoge-

neous BL, where horizontal gradients are non-existent. And therein lies one

of the inherent drawbacks of MLMs; properly representing surface hetero-

geneity. As surface heterogeneity is a common feature in the real-world, this

may lead one to believe that MLMs have no place in modelling it. It is one of

the ambitions of this project to test a conceptual “box” domain over which

the BL will evolve, essentially imposing limitations to the horizontal extent

of homogeneous mixing. To accomplish this end, the influence that advection

and subsidence exert on the BL must first be investigated.

The subject of this investigation will be the Boundary Layer Late After-

noon and Sunset Turbulence (BLLAST) campaign, conducted in southern

France in 2011. Individual days of this campaign have previously been sub-

ject to study with CLASS (Blay-Carreras et al. 2014, Pietersen et al. 2015),

however these studies also involved LESs and focus on in-depth analysis for

a single Intensive Observational Period (IOP). In contrast, this study will

use observed and modelled data from the campaign to initialize and initiate

CLASS under various conditions, and then apply a common set of meth-

ods and analyses to ten of the twelve IOPs. By comparing CLASS outputs

with large-scale forcing free runs, or actual BL evolution observed during

BLLAST, individual campaign days will be classified with respect to the

impact of external forcings. It is the intention of this work, that the charac-

terisation and grouping of particular days will make targeted research based

on the BLLAST dataset in the future more effective. The IOPs will also be

subject to tests of how sensitive the BL development for each day is, to the

choice of initial conditions, whereby CLASS is initiated using profiles mea-

sured at different times. Finally, the “box” domain concept will be applied

for each studied IOP, to determine the effects of averaging surface heat fluxes

as a method to resolve surface heterogeneity in MLMs.
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This thesis is divided into eight chapters: Chapter 2 reviews informa-

tion about the BLLAST campaign and presents the datasets used in this

study. Chapter 3 provides theoretical background on the convective BL and

a description of the CLASS model physics, as well as the developed and ap-

plied modifications implemented into the pre-existing CLASS model coding.

Chapter 4 describes steps taken to initialize CLASS with BLLAST data, in

addition to outlining the cases for each round of experiments. Chapters 5, 6,

and 7 present the outcomes of the experiments, and discusses their implica-

tions. Finally, Chapter 8 summarizes project findings, discusses challenges

encountered during the study and suggests directions of further research.

(Note: In an effort to facilitate navigation ease, hyperlinks have been cre-

ated in Chapters 5, 6, and 7 to quickly navigate between figures, appendices,

and particular IOP sections. When viewing as a PDF, clicking on underlined

figure numbers, appendix letters, or IOP numbers will lead to the indicated

object.)



2 BLLAST

2.1 Campaign Overview

The BLLAST campaign took place in Southern France near the “Plateau de

Lannemezan” from 14 June to 8 July 2011, in an effort to better study and

understand the afternoon transition of the BL (Lothon et al. 2014). For the

campaign, several institutions and organizations came together to facilitate

a comprehensive set of observations of the BL, utilizing a wide range of

in-situ and remote sensing instrumentation and measurement methods. A

total of twelve IOPs were designated during the overall experimental period,

with coordinated flight strategies involving two manned research aircraft and

different Remotely Piloted Aircraft Systems (RPAS), as well as tethered and

untethered balloon launches (Lothon et al. 2014). The area itself (purple

circle in Figure 2.1), is characterized by a heterogeneous mix of agricultural

fields, forest, moor, and urban development. This layout was specifically

chosen, as BL development over mixed land use was a main aspect of interest

for the study (Lothon et al. 2014). Several eddy-covariance stations were also

deployed to monitor, among other things, surface fluxes above mostly uniform

land types (Lothon et al. 2014).

Further details about the campaign can be found in Lothon et al. (2014)

and the associated now freely available data set is accessible on the BLLAST

website at: http://bllast.sedoo.fr/database/.

5
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Figure 2.1: Location of BLLAST experimental area (Lothon et al.

2014, p.10938)

2.2 Datasets

2.2.1 SUMO profiles

One such RPAS is the Small Unmanned Meteorological Observer (SUMO)

(Reuder et al. 2009, 2016). On IOPs 02-11, SUMO flights were launched

from either Site #1 or Site #2, providing profiles of pressure, temperature,

and relative humidity in the BL. These parameters could then be combined

to calculate potential temperature (θ) and specific humidity (q). Wind speed

and wind direction, or the zonal (u) and meridional (v) wind components,

are derived from the variation of the SUMO ground speed during ascent

(with constant throttle) and descent (motor off) in a helical pattern (Mayer

et al. 2012). The vertical resolutions of temperature and humidity is on

the order of 5 m for the ascent and 1 m for the descent. Due to airspace
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restrictions, the flights could only be performed to a maximum altitude of

1.6 km above ground level, with one flight typically lasting between 10 to

15 minutes (Reuder et al. 2016). Ascent and descent profiles were then

processed into a single, corrected profile, with 20 m vertical resolution to

correct for sensor time lag, in particular for the temperature and humidity

sensors (Jonassen 2008). The u and v profiles have a much coarser resolution,

with gaps in the data, sometimes exceeding 100 m. Reliable wind data from

SUMO are only available in fully automatic flight mode which has typically

been established at a height of 150 m after manual take off (Mayer et al.

2012). Wind data below 200 m have therefore been omitted from further

analysis. Otherwise, these profiles were the primary source of data for model

Table 2.1: Number of SUMO profiles flown for each IOP, as well

as from which site they were launched

IOP

number

Calendar

date

Number of

profiles flown
Launch site

IOP00 14Jun 0
N/A

IOP01 15Jun 0

IOP02 19Jun 11

#1IOP03 20Jun 11

IOP04 24Jun 10

IOP05 25Jun 10

#2IOP06 26Jun 11

IOP07 27Jun 12

IOP08 30Jun 12

#1
IOP09 01Jul 6

IOP10 02Jul 9

IOP11 05Jul 10
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initialisation, as will be discussed in Chapter 4. The number of flights per

day and their location can be found in Table 2.1 (Lothon et al. 2014).

Further details regarding SUMO specifications and its use in BLLAST

can be found in B̊aserud (2013) and Reuder et al. (2012, 2016).

2.2.2 MesoNH modelling

Contributions of large-scale advection and subsidence from simulations with

the MesoNH model by Jiménez (2016) were vital for this study. This data set

included both horizontal and vertical advection of potential temperature and

moisture, presented as vertical profiles. Also included were profiles of vertical

velocities, used to estimate the large-scale divergence in the Free Atmosphere

(FA). These modelled profiles started at 06:30 UTC, and are available with

30 minute resolution until 00:00 UTC of the next day (Jiménez 2016).

The lowermost point is 1.5 m above ground level, with the next being

3 m above that, and then ever increasing distances between higher points.

For instance, model levels 39 and 40 are separated by 145 m, while the up-

permost point of 8.5 km (model level 85) is 700 m above the second highest.

The horizontal resolution is 400 m, and the available profiles are averaged

over a 10 km× 10 km domain, centred at Site #1, representing an average of

625 horizontal grid points. Zonal advections are calculated as the difference

between ψE and ψW at the same latitude, over the width of the domain,

10 km, and multiplied by the average zonal wind, u. ψ is a generic variable

that can represent potential temperature or specific humidity. These results

are then averaged across all latitudes to obtain a value for the entire domain

(Equation 2.1) (Jiménez 2016).

adv(x) = u× ∆ψ

∆x
= u× ψE − ψW

10km
(2.1)

A similar process is done for adv(y) with v, ψN and ψS along all longitudes.
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Vertical advections required slightly different treatment. At each model

level, k, the vertical advection is computed as the centred difference of the

vertical ψ gradient, multiplied by the vertical velocity at that model level

(Equation 2.2) (Jiménez 2016).

adv(z) = wk ×
∆ψ

∆z
= wk ×

ψk+1 − ψk−1
zk+1 − zk−1

(2.2)

This is done for each gridpoint in the domain, over which the spatial average

is then taken to find a mean value for the entire domain at level k.

The calculation of vertical advection requires the knowledge of w at all

heights and gridpoints, and it is the horizontal mean over all gridpoints that

is available for use in the MesoNH dataset. This mean is used to calculate

subsidence values from heights in the FA (see Section 4.1.5). Variability of

w over the domain is embedded in the dataset as the standard deviation

across all gridpoints at a given height level. Unfortunately, this standard

deviation be can quite high, on the order of 102 greater than the magnitude

of the mean itself. This reveals that individual updrafts and downdrafts exist

within the domain, and while operating over a smaller area, can be 100 times

stronger than the mean. These values would reflect measurements taken at

a particular point, whereas the mean represents the overall vertical motion

of the FA over the domain. This is what is desired for subsidence values.

The model set-up is described in further detail, in Jiménez & Cuxart (2014).

With limitations of this MesoNH dataset in mind, conceptual progress in this

study is hinged upon these outputs matching with reality.

2.2.3 Surface heat flux maps

Land use maps and corresponding surface heat flux maps by Hartogensis

(2015b) were instrumental for investigating the sensitivity of BL evolution

to surface inhomogeneity. These 30 m resolution maps, averaged over a
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30 min period, formed a time-series spanning each entire IOP (Hartogensis

2015a). Their creation involved the eddy-covariance stations deployed across

the BLLAST experimental area. As each of these stations was deployed over

mostly uniform land type, the surface heat fluxes observed were assumed to

be representative of the fluxes for the corresponding land surface over the

whole domain. For land uses not monitored during the campaign (urban and

bare soil), a simple energy-balance model was used (Hartogensis 2015a), to

estimate the fluxes for these surface types. Further details regarding surface

heat flux map creation can be found in (Hartogensis 2015a).

2.2.4 Radiation

Additionally, minutely radiation information was obtained from the energy

balance station operated by the University of Bergen, at the small-scale het-

erogeneity field at Site #1. This dataset provides direct measurements of

the four components of the radiation balance (incoming solar radiation, re-

flected solar radiation, downwelling longwave radiation, and longwave ra-

diation emitted by the surface) that can be used to calculate the surface

radiation balance. Measurements were taken with a Kipp and Zonen CNR1

Net Radiometer and were assumed to be representative for the entire exper-

imental area.



3 Theory

3.1 Boundary Layer Physics

Stull (1988, p.2) defines the BL as ”that part of the troposphere that is

directly influenced by the presence of the earth’s surface, and responds to

surface forcings with a timescale of about an hour or less”. So by his defini-

tion, the BL is a rapidly evolving environment, with surface and near-surface

processes playing key roles in its development. The energy these processes

need is overwhelmingly driven by the effect of incoming solar radiation has

on the surface itself. Therefore, the properties and characteristics of the

ground and how it responds to solar forcings make major contributions to

BL development.

Sensible (SH) and latent (LE) heat fluxes are two such processes, relating

to potential temperature and specific humidity, respectively. Depending on

the type of surface, more energy may be allocated towards SH or LE. Dry

desert sand has very little water to be evaporated, especially if compared to

a damp tropical rainforest. Therefore the rainforest has a larger ratio of LE

to the total amount of SH and LE, a ratio known as the Evaporative Fraction

(EF) (Vilà-Guerau de Arellano et al. 2015, p.151) The value of the EF is an

indication of how much of the total energy is being partitioned into LE, which

will affect BL height, and temperature and humidity evolutions. These last

two, along with momentum, are usually distributed uniformly throughout a

11
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subdivision of the BL known as the Mixed Layer (aka. Convective Boundary

Layer) (ML) (Stull 1988, p.12). Growth of this layer is typically convectively

driven, and is related to the strength of the fluxes at the surface (Stull 1988,

p.452).

This growth can be inhibited by the stable stratification of potentially

warmer air aloft, a feature known as an inversion layer. The presence of

this inversion layer, also known as the Entrainment Zone (EZ), will enhance

diurnal warming of the ML, up until such time as the potential temperature of

the ML is the same as the potential temperature of the lowest part of the FA,

at which point the height of the ML will begin to increase. This growth occurs

via downwards entrainment of the less turbulent, but potentially warmer air

of the FA (Stull 1988, p.12). This air is also typically drier, thereby decreasing

the mean specific humidity of the ML, further impacting surface SH and LE.

One other hitherto unspoken of mechanism for BL development is the

large scale synoptic condition. As Stull (1988) points out, a low pressure

system is characterized by large scale upward vertical motion, so the presence

of a cyclone can drastically lift the BL. Conversely, a high pressure system,

with FA convergence and corresponding large scale subsidence, will repress

growth and provide a more well-defined BL top (Stull 1988, p.10).

3.2 CLASS Physics

The Chemistry Land-surface Atmosphere Soil Slab (CLASS) model is a one

dimensional (in space), zeroth-order-jump MLM, meaning that the EZ is

treated as an infinitesimally thin layer, where uniformly blended variables in

the ML abruptly jump to FA values. Though this is a simple approximation,

it has been shown that zeroth-order-jump models can accurately represent

the evolution of the ML variables (Pino et al. 2006, e.g.). Figure 3.1 shows a

textbook vertical profile of potential temperature along-side a zeroth-order-
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Figure 3.1: (a) Typical vertical potential temperature (θ) profile

of the BL. (b) The same profile approximated using a zeroth-

order-jump. “h” is the BL height. (Vilà-Guerau de Arellano

et al. 2015, p.27)

jump profile.

In order to represent the evolution of these ML variables, CLASS employs

the generalized Equation set 3.1 (Vilà-Guerau de Arellano et al. 2015, p. 29).

∂〈ψ〉
∂t

=
1

zi

[
(w′ψ′)s − (w′ψ′)e

]
(3.1a)

(w′ψ′)e = −∆ψzi

(
∂zi
∂t
− ws

)
(3.1b)

∂∆ψzi
∂t

= γψ
1

zi

[
(w′ψ′)s − (w′ψ′)e −

∂〈ψ〉
∂t

]
(3.1c)

In Equations 3.1, ψ is a generic turbulent variable, that can represent a

ML variable such as potential temperature, or specific humidity. ψ can also

represent u or v, although Equation set 3.1 requires then the addition of

pressure gradient and coriolis terms (Vilà-Guerau de Arellano et al. 2015,
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p.70).

Potential temperature and specific humidity can also be affected by the

addition of an advective term in Equation 3.1a, using a constant value over

the entire simulation time. Subsidence is parametrized by FA horizontal

divergence and BL height (Equation 3.2) (Vilà-Guerau de Arellano et al.

2015, p.47), and can similarly be set to a constant input.

ws = −Div(UFA)zi (3.2)

SH and LE maximums are prescribed and can be fit to a sinusoidal curve

beginning and ending, by default at sunrise/sunset, or explicitly stated times

(see Section 4.1.3). Though these surface fluxes, specifically SH, can become

negative in the real world, CLASS values will not decrease below a value of

zero during the afternoon transition.

Incoming solar radiation can be calculated using a set latitude, longi-

tude, and the day of the year, and further modified with a cloud-cover factor

expressed as percentage of the sky covered.

CLASS thermodynamics can be coupled to the land surface, effectively

bringing the surface fluxes “online” and interactive with changes in the land-

atmosphere system. However, the activation of this aspect of CLASS in-

volves the prescription of surface characteristics, such as water content and

temperature of soil layers across different depths, as well as various ecological

parameters. As the surface flux maps provided by Hartogensis (2015b) rep-

resent the evolution of the observed surface forcings of the day, the inclusion

of this CLASS module was deemed outside of the scope of this study, and

subsequently, SH and LE were left “offline” and prescribed.
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3.3 CLASS modifications

CLASS is a powerful and efficient tool, however the code required specific

and precise adaptation to suit the needs of this study. Most importantly,

advection and subsidence forcings needed to be time-dependent, rather than

constant, as the base version of CLASS allows. With the availability of ad-

vection and subsidence data from the MesoNH model (Jiménez 2016), it was

possible to create evolutions of these large-scale forcings (see Section 4.1.4).

CLASS was then customized to accept these evolutions as variables in the

model code (coding details can be found in Appendix A). Therefore, CLASS

would be updated every timestep (1 s) with new values of subsidence and

Figure 3.2: Comparisons between constant and time-dependent

divergence (i.e. subsidence) (left) and potential temperature and

specific humidity advections (right), from the MesoNH outputs,

for IOP06 (26 June 2011)
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advection to influence the ML. This same procedure was also made possible

to be implemented for radiation values, using data from the University of

Bergen’s MicroSite at Site #1, to account for changing sky conditions.

The change in value from one second to the next may seem minor, and it’s

implementation involves a non-trivial increase in complexity as compared to

simply applying an average across the simulation time. However, this setup

culminates to allow for predominantly monotonic motions (as in Figure 3.2)

to assert their maximum influence at the appropriate times. This creates the

potential for noticeably different outcomes from situations where a constant

average is applied to the entire simulation.



4 CLASS Modelling

4.1 Initialisation

4.1.1 SUMO and ML profiles

The primary basis for the CLASS model initial profiles came from the official

SUMO BLLAST dataset consisting of multiple vertical flights for each IOP

day. For this reason, only ten of the twelve IOP days were studied, since

SUMO profiles were not flown on IOP00 nor IOP01. For the remaining IOPs,

flights measured various atmospheric conditions, such as temperature, and

relative humidity to generate a profile of the vertical structure of the BL.

As MesoNH advection and subsidence data was only available after 06:30

UTC, interpolations of large-scale forcings for flights earlier than this were

impossible (see Section 4.1.4), and all flights earlier than 06:30 UTC were

removed from further analyses. Additionally, four other SUMO profiles were

removed due to various issues, as detailed in Table 4.1.

A MATLAB® script (hereafter referred to as ”the program”) was writ-

ten to compile and organize each profile, and then from each profile, analyse

and derive all BL and FA properties required by CLASS. Additionally, the

program was configured to automatically initiate the CLASS model and after-

wards import model outputs, while extracting and storing meta-data relating

to model run generation and statistical measures for each. The first step to

17
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Table 4.1: SUMO runs removed from analyses

Day Date Runtime [UTC] Reason for removal

IOP02 19Jun 05:56

Earlier than 06:30UTC

IOP03 20Jun 05:28

IOP03 20Jun 05:50

IOP05 25Jun 06:28

IOP06 26Jun 06:04

IOP11 05Jul 06:20

IOP06 26Jun 14:31
Low flight <750m

IOP07 27Jun 15:59

IOP11 05Jul 13:01
Pressure sensor failure

IOP11 05Jul 13:24

this process was the generation of ML, zeroth-order profiles. To accomplish

this end, appropriate BL heights had to be estimated and passed to the pro-

gram. Pre-existing height estimates, gathered by a variety of measurement

methods, are available in the BLLAST dataset1, however upon their incor-

poration into the program, it was found that their use did not always provide

satisfactory results when imposed on the SUMO profiles. This is especially

poignant in regards to the calculation of ML profiles, which can be sensitive

to differences as small as 20 m (one height interval in the profiles). There-

fore, BL heights deemed “Best”, and used for this study, were estimated on

a visual basis.

To assist with the visual evaluation, coding for four automatic criteria

was implemented into the program, based on potential temperature, virtual

potential temperature, specific humidity, and relative humidity (Couvreux

2012), and were used to guide estimates. Figure 4.1 shows potential tem-

1http://bllast.sedoo.fr/database/source/metadata_list.php

http://bllast.sedoo.fr/database/source/metadata_list.php
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Figure 4.1: SUMO profiles of IOP06 (26 June 2011) at 12:07 UTC

for (a) Potential temperature (θ), (b) Virtual potential Temper-

ature (θv), (c) Specific humidity (q), (d) Relative humidity, (e)

Wind speed, and (f) Wind direction. Solid lines correspond to

observed measurements, with approximated ML profiles overlaid

in dashed lines. Black symbols indicate automatically estimated

BL height from the five criteria, with the modified average of the

first four appearing in (f). Red circled points for WS and WD,

are those below 200 m, and are therefore deemed unreliable and

not considered in the mean of the ML.
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perature, virtual potential temperature, specific humidity, relative humidity,

wind speed, and wind direction profiles for 12:07 UTC on IOP06 (26 June

2011), as well as corresponding automatic criteria and manually estimated

heights. Criteria (Couvreux 2012) were determined by:

• Criteria 1, uses the height of the maximum of the second derivative of

potential temperature. In order to emphasize the BL transition and

minimize small irregularities in the FA and ML, a 5-point moving av-

erage was applied to the potential temperature and specific humidity

profiles. After which, a centered differencing numerical scheme was

implemented to approximate the first and second derivatives. Unfor-

tunately, while the smoothing generally improved automatic estimates,

it did also occasionally differ by 20 m from the placement that would

have occurred if smoothing was not applied (see Figure 4.1a,c).

• Criteria 2, is the altitude where virtual potential temperature becomes

greater than the mean of all levels below, +0.25 K. Similarly to Criteria

1 & 3, a 5-point moving average smoothing function helped to eliminate

small distortions in the ML profile, which may have otherwise lead to

grossly inaccurate BL heights.

• Criteria 3 is analogous to Criteria 1, however it uses the minimum of

the second derivative of specific humidity.

• Criteria 4 places the BL height at the same altitude as the maximum

of the relative humidity profile. As this maximum would occasionally

be at the very top or bottom point of the profile, with clear visual

indications that the true relative humidity maximum (BL height es-

timate) was at an intermediate altitude, these points were dealt with

using a linear detrending algorithm. This algorithm identifies linear
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FA and Surface Layer (SL) relative humidity lapse rates and removes

them from consideration of the relative humidity maximum.

Additionally, a fifth criteria using the bulk Richardson number method

(Zhang et al. 2014) was implemented into the program. The critical Richard-

son number was made dependent on the stability of the BL, with the values

recommended by Zhang et al. (2014) (0.24, 0.31, or 0.39) for stable, weakly

stable, or unstable regimes, respectively. However, due to gaps in wind data

sometimes exceeding 100 m, this criteria was not used as a guide, but moreso

as a potential affirmation of the best BL height after the fact. In a similar

capacity, the average of the first four criteria was determined, so that it might

be compared with the visually determined height. In order to prevent clearly

spurious criteria (as in Figure 4.1b) from influencing this average, any crite-

ria point further than one standard deviation from the mean of all four was

neglected, and the average recalculated with those remaining. Ultimately,

the final height passed to CLASS was qualitatively decided.

Once the appropriate BL heights were loaded, mean values for ML po-

tential temperature, specific humidity, and u & v wind components could be

calculated. As all SUMO data points below 200 m were deemed unreliable,

they were neglected in mean calculations. An unfortunate side effect of this

quality control, was the inability to find averages for u and v if the BL was

deemed to be below 200 m. Fortunately, this caveat impacted few flights,

as the treatments of morning and afternoon transitions were different. BL

heights for morning flights, which were more likely to be used for initialisa-

tion, were taken to be the top of the Stable Boundary Layer (SBL). This is in

contrast to afternoon transition flights being less used for initialisations and

moreso for comparisons of BL development. For these times, the top of the

Residual Layer (RL), if present, was deemed a more accurate representation

of the BL height.

FA lapse rates were approximated as a linear trend of all data points above
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the BL height. The zeroth-order jumps required by CLASS were calculated

as the difference between ML mean value and the intersection of the lapse

trend and the BL height. Figure 4.2 gives a visual representation of the

process for finding the required ML properties.

Figure 4.2: Visualization of finding ML properties: (a) A vertical

profile (solid black line), with pre-determined BL height (dotted)

(b) From BL height (red X) to ground, values are averaged to

find ML mean (solid red) (c) Linear lapse trend determined of

all points above BL height, blue X is the intersection of that

trend line with the BL height (d) Zeroth-order jump (purple) is

determined to be blue X minus red X.
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4.1.2 Surface fluxes

Instantaneous surface momentum fluxes for u and v required calculation for

each initialization run. Utilizing the assumption of a SL that is one tenth of

the total height of the BL (zi), the friction velocity (u∗) can be found using

Equation 4.1 (Vilà-Guerau de Arellano et al. 2015, p.67).

u∗ = k|u| ln−1
( zi

10zom

)
(4.1)

where, |u| =
√
〈u〉2 + 〈v〉2, k is von Karmen’s constant (0.4), and zom is the

surface momentum roughness length. Once u∗ is calculated, Equation 4.2 can

be substituted into Equations 4.3 and 4.4, to give the instantaneous surface

momentum fluxes (Vilà-Guerau de Arellano et al. 2015, p.69).

CM =

(
u∗
|u|

)2

(4.2)

(w′u′)s = −CM |u|〈u〉 (4.3)

(w′v′)s = −CM |u|〈v〉 (4.4)

4.1.3 Sensible and Latent Heat Fluxes

As the influence of surface heterogeneity was of particular interest in the

BLLAST campaign (Lothon et al. 2014, p.10936) and also this study, SH

and LE fluxes were taken as areal averages over a square of variable size,

centered on the launch site of the daily SUMO profiles (see Figure 4.3).

Pre-generated surface flux maps (Hartogensis 2015b) were used as the

basis for these averages, based off of a 30 m resolution land use map. Using

eddy-covariance data from the various surface stations, or modelled fluxes for

‘Urban’ and ‘Baresoil’ surface types (Hartogensis 2015a, p.11), each surface

type was assigned a flux evolution. The proportion of a particular land type

within a given domain would influence how substantially that surface’s flux
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magnitudes affected the average flux, for that domain (Equation 4.5).

Fluxavg,t =
1

N

( 8∑
surface=1

nsurfaceFluxsurface,t

)
(4.5)

where surface cycles through the eight surface type classifications used by

Hartogensis (2015b), n is the number of 30 m× 30 m gridpoints of that surface

type inside the domain, and Flux is the SH or LE value at time, t. Finally, N

is the total number of gridpoints contained within the given domain, resulting

in a mean Flux value.

These averages were calculated every 30 minutes, leading to a timeseries

Figure 4.3: Heat flux and roughness areal averages of IOP03 (20

June 2011).
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of mean surface fluxes. A sinusoidal approximation was then fit to positive

SH values, with the same being done to LE for the same time period. The

peak of each approximation was prescribed as the diurnal maximum of a

sinusoidal curve to CLASS, for both SH and LE. Start and endtimes for these

curves (see starttime_wt & starttime_wq and endtime_wt & endtime_wq

in Appendix B) were determined to be the time when the fitted SH and LE

approximations intersected 0 in the morning and afternoon. However, as

data for both SH and LE were embedded in the flux maps in units of W m−2,

they first had to be converted and passed to CLASS in units of K m s−1 and

gwater kg−1air m s−1, respectively. This was done via Equations 4.6 and 4.7

SHCLASS =
SHfluxmap

cpρ
(4.6)

LECLASS =
LEfluxmap
Lwρ

(4.7)

where Lw is the latent heat of vaporisation of water, cp is the specific heat

capacity of air at constant pressure, and ρ is the density of the air. As ρ

was not explicitly recorded in the SUMO profiles, the ideal gas law (ρ =

pR−1T−1) was applied to pressure and temperature values at the lowest

point in the profile (10 m), where R is the specific gas constant for dry air.

The average of densities found from each profile was used as ρ in the ideal

gas law, representing a density for the day.

Utilizing the same land use maps used by Hartogensis (2015b) to gener-

ate the surface flux maps, typical roughness lengths were assigned to each

surface type (see Table 4.2). Over the same area of interest as the surface

heat fluxes, an average across all roughness lengths was calculated to find a

value representative for the area. Having heat fluxes and roughness length

dependent on area was motivated by the aim to produce more realistic ratios

of buoyancy and shear production.
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Table 4.2: Surface roughness lengths (Hansen 1993, p.25-30). Un-

known surfaces were assigned a value of NaN and not considered

in the average.

Surface Type zo [m]

Urban 0.4

Baresoil 0.001

Corn 0.25

Wheat 0.2

Moor 0.007

Grass 0.01

Forest 1

Unknown NaN

4.1.4 Time-dependent variables

In order to assess the impact changing subsidence and advection has on BL

properties, CLASS required modifications to the FORTRAN code. These

modifications can be read about in detail in Appendix A. For these modifica-

tions to function properly, large text files had to be generated and passed into

CLASS. These text files consist of a single line of numerical entries, with as

many entries as timesteps in the appropriate CLASS run. Each entry corre-

sponds to an instantaneous value, which has been interpolated between two

advection/subsidence output files from the MesoNH model. As each model

output file is also an instantaneous value, a linear interpolation is done over

the time difference between the files, with the number of discrete intervals de-

pendent on the CLASS timestep. The example code block below, though not

written in a specific programming language, demonstrates the interpolation

described above.
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CLASS_timestep_size(dtime) = 1 second
Model_file_1_time = 13:00 UTC
Model_file_2_time = 13:30 UTC
Model_time_difference = (13:30 - 13:00)*60

= 1800 seconds
Model_file_1_value = 100 units
Model_file_2_value = 200 units

value(i) = (200 - 100)*i/(1800/1) + 100,
where i = 0,1,...,1800

So,
value(180) = 110 units

where 180 is 13:03 UTC

To obtain a high-resolution evolution of advection/subsidence, this inter-

polation was performed between all model output files, starting from the file

just before the simulation start time and ending with the file just after the

simulation end time.

A similar interpolation was done with the minutely radiation timeseries

for the University of Bergen’s instrumentation at Site #1.

4.1.5 Large-scale forcings

With semi-hourly advection and subsidence profiles, average values across

the ML and FA needed to be extracted from each profile (represented by the

“units” in the Section 4.1.4 example). As SUMO flights were attempted on

a mostly hourly basis during IOPs, linear interpolation between best deemed

BL height estimates was required to differentiate BL and FA in MesoNH

profiles. The black dotted line in Figure 4.4 represents this interpolation

between observations (×). Once layers were appropriately identified, vertical

profiles at each time and within the confines of a particular layer could be

created. Figure 4.4(right) shows the vertical profile for ML potential temper-

ature advection at 18:30 UTC on IOP09. The lowermost 300 m has warm air
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Figure 4.4: 3D Potential temperature advection evolution of

IOP09 (01 July 2011) (left). Observed BL heights are indicated

with×, with linear interpolations between as dotted lines. Dashed

line indicates time of vertical profile (right). Green dots are

MesoNH model levels, and pink dashed line is the spatial average

of the pink shaded area, over the model depth.
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advection, while from 300 m to the BL height, has cooling. These positive

and negative areas were calculated, summed, and the remainder distributed

evenly throughout the model depth. Thus, the sign of the remainder in-

dicates warming or cooling, and the value indicates the strength. In cases

where interpolated heights did not match exactly with MesoNH height lev-

els, the determined value was seen to be representative of the whole ML. A

similar process can be done for the moistening or drying of the ML.

The calculation of ws is analogous to advections, though it operates from

the BL height, up to just below 2.5 km. Once an average FA vertical ve-

locity was found, it was then converted to horizontal divergence via Equa-

tion 3.2. This was done to maintain consistency with the unmodified version

of CLASS, which can only accept a constant divergence, rather than a con-

stant vertical velocity.

4.2 Numerical Experiments

4.2.1 Experiment 1: Advection & Subsidence

Influence

In order to investigate how significant advection and subsidence effects were

to daily BL development, Experiment 1 was built upon a control simulation

with both set to zero, otherwise referred to as “A-Off/S-Off”. This was then

compared to a situation with the time-dependency explained in Section 4.1.4

only activated for advections, and subsidence absent (“A-Vary/S-Off”), and

the corresponding scenario of vice versa (“A-Off/S-Vary”). Finally, time-

dependency was triggered for both advections and subsidence (“A-Vary/S-

Vary”). For the three set-ups with time-dependency, advections of potential

temperature and specific humidity were only applied within the BL. Large

scale forcings data from the MesoNH model, provided by Jiménez (2016),
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were used. Where this large-scale data was unavailable (such as IOPs 02, 04,

07, & 08), model performance was considered equivalent to “A-Off/S-Off”.

As the MesoNH dataset was averaged over a 10 km× 10 km square cen-

tered over Site #1 (see Figure 4.3), the equivalent size was used for the areal

averages of SH, LE, and roughness length. Since the same area, and therefore

the same average flux, was used for all three runs, the ending times for SH

and LE across the runs were identical. Time-dependent radiation information

was provided by the University of Bergen’s set-up at Site #1, and overrode

the default radiation settings that CLASS normally obtains from latitude,

longitude and day of the year. As the assumption of a SL is critical for the

calculation of instantaneous surface momentum fluxes, this assumption was

passed to CLASS for all situations, with identical roughness lengths.

4.2.2 Experiment 2: Sensitivity to Initial Conditions

As CLASS is initialized at an exact moment in time, determining the impact

of initializing run choice on BL development was important. Using visual

aides such as Figure 4.1, the three best SUMO runs from any given IOP

were chosen. This was done almost entirely on a qualitative basis, with

contributing factors such as EZ distinctness and sharpness, vertical structure

of ML profiles, and linearity of FA lapse rates. To provide as many data

points as possible for comparison to CLASS output later, only runs earlier

than 14:00UTC were selected. An exception to this rule was IOP09, since

due to a limited number of runs, especially runs prior to noon, the third

profile of the day was conducted at 14:18UTC, and was selected to be the

second best initialization run. Table 4.3 lists three model initialisation times,

with time used in Experiment 1 listed as “#1-Control”, and two additional

test runs, as well as the number of valid flights for each day.

Experiment 2 was only implemented for IOPs 03, 05, 06, 09, 10, & 11,
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Table 4.3: Best run choice and the number of valid profiles flown

each day. In this context, valid refers to the total number of

profiles flown on each day, minus any removed for reasons listed

in Table 4.1)

Day
Initialization Runtime [UTC] Number of

1st-Control 2nd-Test 3rd-Test valid profiles flown

IOP03 12:11 09:43 11:16 9

IOP05 11:02 12:29 13:58 9

IOP06 12:07 11:11 12:54 10

IOP09 10:45 14:18 06:52 6

IOP10 09:19 10:01 10:58 9

IOP11 09:17 12:08 08:54 7

as approximate convergence given time-dependent advection and subsidence

information was the primary objective of the Experiment. Areal averages

and surface layer assumptions for Experiment 2 were also consistent with

Experiment 1.

4.2.3 Experiment 3: Areal Averaging Effects

To assess the impacts that extent of surrounding area differences have on

BL development, Experiment 3 focuses on changing the length-scale of this

averaging. For continuity, included in this Experiment is a CLASS model

run already introduced in both Experiments 1 and 2. Specifically, the 1st

choice run inside the 10 km× 10 km domain, with advection, subsidence, and

radiation all varying in time.
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Experiment 3a: Coarse Areal Averaging Effects

Firstly, this model run was analysed alongside three others of decreasing

domains: 4 km× 4 km, 2 km× 2 km, and 1 km× 1 km, all centred around

the launch site of the day (see Figure 4.3 for Site #1). Due to the nature

of this Experiment, results for all ten IOPs could be obtained. For IOPs 03,

05, 06, 09, 10, & 11 variation about domain was done with time-dependent

advection and subsidence, whereas for IOPs 02, 04, 07, & 08, advection and

subsidence were forced to be ”Off”.

Experiment 3b: Fine Areal Averaging Effects

Expanding upon the preliminary results from Experiment 3a, a more detailed

analysis was implemented, under all the same conditions. However, domain

changes were much finer, increasing by 0.25 km from 0.25 km up to 10 km.



5 Experiment 1: Advection &

Subsidence Influence

5.1 Results

Advection and subsidence are both processes that can impact BL develop-

ment, depending on the synoptic conditions of the day. While advections

can influence ML means and change the strength of the overlying inversion

(zeroth-order jump), the presence of a strong high-pressure system will in-

hibit the rate of BL growth by large/scale subsidence, impacting the height

(i.e. volume) over which ML means can spread. It is therefore the conclu-

sion of Stull (1988) that advection and subsidence cannot be neglected for

modelling BL development (Stull 1988, pp.483-484). However, synoptic and

mesoscale conditions govern the influence these forcings can have on any par-

ticular day. The effect on the BL height for the different IOPs during the

BLLAST campaign is summarized in Figures 5.1 and 5.2. Each Subfigure

displays the automatically generated criteria (as described in Section 4.1.1),

having symbology consistent with that introduced in Figure 4.1. The cor-

responding time series for ML means of potential temperature and specific

humidity can be found in Appendix C, though only markers representing

ML means derived from “BLHbest” are presented. These two ML means,

along with BL height, will be used as the primary variables to gauge model

33
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Figure 5.1: CLASS model runs for Experiment 1, IOPs 02-06.

Later IOPs and description continued in Figure 5.2. (Jump to:

IOP02, IOP03, IOP04, IOP05, IOP06)
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Figure 5.2: CLASS model runs for Experiment 1, IOPs 07-11.

Red lines correspond to model runs without advection or sub-

sidence (A-Off/S-Off), green with time-varying advections (A-

Vary/S-Off), cyan with time-varying subsidence (A-Off/S-Vary),

and purple with both varying in time (A-Vary/S-Vary). (Jump

to: IOP07, IOP08, IOP09, IOP10, IOP11)
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performance. The four results of the CLASS model runs overlie these points:

“A-Off/S-Off” represents the model run with large-scale forcings set to zero;

“A-Vary/S-Off” introduces time-variant advection, while remaining subsi-

dence free; “A-Off/S-Vary” is the converse of “A-Vary/S-Off”; and finally,

“A-Vary/S-Vary” activates both advection and subsidence.

Though large-scale data was not available for IOPs 02, 04, 07, & 08, a

CLASS simulation without advection or subsidence was still possible, the

equivalent of an “A-Off/S-Off” situation. Therefore, information pertaining

to the importance of large-scale external forcings for these days could still be

inferred, albeit to a lesser extent than for IOPs 03, 05, 06, 09, 10, & 11.

In regards to the automatically generated BL heights based on the five

criteria described in Section 4.1.1, depending on the day, estimates can be

mostly constrained (IOP08 in Figure 5.2) or with a good deal of scattering

(IOP02 in Figure 5.1). It is important to note, that while tight agreement

of criteria with each other and the best deemed height (× in Figures 5.1 and

5.2) does give an indication of a well-defined BL top, the opposite is not nec-

essarily true. Wide spread in criteria heights could point to “messy” profiles,

ones lacking smooth curves in either the ML or FA lapse rate, generating

spurious estimates. Or it could indeed imply as intuition would conclude: a

poorly-defined BL top with an extensive EZ. These considerations are im-

portant to keep in mind when scrutinizing CLASS model performance to

observations.

5.2 Discussion

As it is available for all ten IOP days, the “A-Off/S-Off” set-up is an ideal

standard to use in the analysis of this Experiment. For all but one of the

studied days, IOP08, the red curve rises well above the best deemed BL

heights, and even above most criteria heights in some cases. Aside from
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IOP08, two other dates, IOPs 04 & 09 exhibit advection and subsidence free

runs that moderately approximate observed BL heights. For all other days,

however, these runs do a poor job of simulating observed BL heights. Even

for these three days, model runs have difficulty capturing the shape of the

observed heights.

As the terms “poor” and “shape” are subjective, objective methods can

be introduced, to better assess model performance. One such method, the

Root Mean Squared Error (RMSE) is a measure of model accuracy: the larger

the RMSE, the less accurate the model. It is a quantification for “poor”, and

it is described by Equation 5.1.

RMSE =

√√√√ 1

N

N∑
n=1

(Mn −On)2 (5.1)

where On is the observed value of a particular flight, n, while Mn is the

corresponding CLASS output value at the same time, and N is the number

of observations made. As differences between model output and observation

at the initialisation time of the model were zero, RMSE calculations were

applied only to flights post-initialisation.

While RMSE can give an indication of how accurate a model run is,

the Mean Error (ME) (Equation 5.2), reveals whether the run is under or

overestimating observations, otherwise known as its bias.

ME =
1

N

N∑
n=1

(Mn −On) = M̄ − Ō (5.2)

It is the signage of ME that signals the direction of bias, while its magnitude

represents the strength of the bias. Similarly to RMSE, only measurements

post-initialisation were used.

The final statistical measure used to quantify model performance is the

Correlation Coefficient (CORR) (Equation 5.3).

CORR =
cov(M,O)

σMσO
(5.3)
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where cov(M,O) is the covariance of M and O, while σ is the standard de-

viation of the same. It provides an indication of how alike the shapes of

two curves are, regardless of magnitude, though as sample size (N) becomes

smaller, CORR becomes less reliable. It should also be noted that quan-

titative comparisons between curve shapes is an extremely nuanced field of

study, and though CORR may not be the most robust measure of shape

similarity, its use was deemed adequate.

Unfortunately, as SUMO observations form discrete evolutions, CLASS

outputs could only be evaluated at corresponding times. Therefore, undula-

tions in CLASS outputs occurring between flights cannot be assessed for any

of these three methods. Additionally, it is through the combination of these

measures that pertinent information can be derived, as any one measure does

not communicate all of “the big picture”. With these statistical tools, model

results from each IOP day can be evaluated and weighed against the others.

5.2.1 IOP08 (Figure 5.2; Appendix C.3)

Figure 5.3: Statistical metrics for Experiment 1: IOP08

IOP08, for instance, has the smallest RMSE and ME (see Figure 5.3) for

“A-Off/S-Off” of all IOPs (Appendix D has numerical tables of statistical
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metrics of all IOPs). Therefore, it can be said that this day had the best

performing “Off” run of all the IOPs. Although, this run also has a negative

CORR of -0.380, hinting that the shape of the observed BL height, zi, is

not captured by CLASS. Indeed, late afternoon BL decay appears to go

undetected. However, as it is at this time that the automatic criteria begin

to spread, it may be the opinion of others that the best deemed height would

be higher and much closer to the CLASS simulation height, thereby removing

any need for explanation of negative CORR value and improving RMSE and

ME. Figure 5.4 showcases the subjectivity of pin-pointing exact heights for

these late afternoon flights. It is worth repeating that late afternoon BL

Figure 5.4: Virtual Potential Temperature profiles of IOP08 (30

June 2011). SUMO profiles on the left (with 3-point moving av-

erage applied), with ML approximations on the right.
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height determination was associated with the RL, rather than any nocturnal

SBL. In this case, that begins forming at 18:22 UTC (as evidenced by both

the height of the BLHθV criteria marker for IOP08 in Figure 5.2 and the

SUMO profile in Figure 5.4 at this time). Comparisons of ML means for

potential temperature and specific humidity also indicate that the CLASS

simulation closely approximates observed values, with the smallest absolute

values of RMSE and ME for each parameter, and high CORR. Overall, as

advection and subsidence data from the MesoNH model was unavailable for

this day, one of two deductions regarding IOP08 can be made:

• The role played by large-scale external forcings on IOP08 was limited

compared to other IOPs.

• Or, the influence of large-scale external forcings was correspondingly

balanced by other processes, such as areal extent of surface hetero-

geneity blending (Experiment 3)

5.2.2 IOP04 (Figure 5.1; Appendix C.2)

Figure 5.5: Statistical metrics for Experiment 1: IOP04

As previously mentioned, modelling of IOP04 produced BL heights closer

to observed than most of the other IOP days. Comparisons of RMSE and
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ME reveal that IOP04 has the second smallest values for these measures (see

Figure 5.5), after IOP08. Additionally, though some spreading of criteria is

also present for this day, maximum differences between best deemed height

and the average criteria are smaller than compared to IOP08. If one were

to look at profiles for IOP04 (Figure 5.6), one would see that the BL top

has much better definition throughout the entire day, increasing the confi-

dence in “BLHbest”. This confidence also permeates over to observations of

ML means, and correspondingly to statistical metrics. Prior to 15:00 UTC,

the mean potential temperature from CLASS output was within 0.3 K of ob-

served values. After this point, the temperatures diverge until the end of the

Figure 5.6: Virtual Potential Temperature profiles of IOP04 (24

June 2011). SUMO profiles on the left (with 3-point moving av-

erage applied), with ML approximations on the right.
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simulation, reaching nearly 2 K at that time, though high CORR shows that

the shapes of the two are alike. Though CLASS mean specific humidity only

has a weak correlation with observations, with such low RMSE and ME, this

CORR strength holds less meaning. So, one can reasonably arrive at the

following for IOP04:

• Advection and subsidence have a noticeable effect on BL growth,

while having a limited effect on ML means

• Or, similarly to IOP08, with MesoNH data unavailable for this day, it is

possible that advection and subsidence were significant and partially

checked by other processes, or, they were limited and dominated

by other processes

5.2.3 IOP09 (Figure 5.2; Appendix C.4)

Figure 5.7: Statistical metrics for Experiment 1: IOP09

Just like IOPs 08 & 04, the advection and subsidence free CLASS run of

IOP09 displayed less significant differences between modelled and observed

BL heights, when compared to IOPs so far unmentioned. Though the dif-

ference does approach 470 m by 20:00 UTC, this departure from observation
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is small compared to the almost 2000 m difference exhibited by the worst

performer, IOP07. As well, ML means for potential temperature and specific

humidity for the ‘A-Off/S-Off’ run of IOP09 approximate measured values,

displaying high to mid-range CORR and below campaign average RMSE and

ME.

Unlike IOPs 08 & 04, MesoNH data was available for IOP09. Upon in-

troduction of this large-scale motion, BL heights improve for all three of the

other runs. Despite having only having a mid-range CORR, ‘A-Vary/S-Vary’

has the second-lowest RMSE among IOPs with large-scale data. Improved

ME over ‘A-Off/S-Off’ also indicates that the model run has less BL bias,

drawing closer to observed BL heights. Unfortunately, such improvement

can not be seen in the ML mean for potential temperature. Initially only

displaying a 1.3 K bias, the model run with large-scale forcing now underes-

timates by 3 K, and has developed a strong anti-correlation. Showing neither

improvement nor deterioration, ML mean specific humidity metrics remain

largely unchanged across all runs.

Individual effects of advection and subsidence can be seen in ‘A-Vary/S-

Off’ and ‘A-Off/S-Vary’, respectively. While ‘A-Vary/S-Off’ has a noticeable

improvement on BL height estimates, ‘A-Off/S-Vary’ moreso seems to undu-

late about the red curve. This also causes little effect to ML means. Studying

the subsidence evolution for this day (not shown), FA divergence oscillates

with an average near to zero, essentially producing a null net effect. With

subsidence playing such a small role, ‘A-Vary/S-Off’ must therefore generate

the changes one can see in 〈θ〉 and zi. It is likely due to the fact that poten-

tial temperature advection is predominantly monotonic in time, increasing

from strongly negative at first to eventually zero. This cooling diminishes

BL growth by decreasing the buoyancy flux (Equation 5.4), which drives

convective growth (Vilà-Guerau de Arellano et al. 2015, p.54).
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w′θ′v = w′θ′ + 0.61(〈θ〉w′q′ + 〈q〉w′θ′ + w′θ′q′)

w′θ′v ≈ w′θ′ + 0.61(〈θ〉w′q′) (5.4)

The consequences of this on the ML mean are substantial. ‘A-Vary/S-

Off’ has the largest RMSE, strongest bias, and lowest CORR for 〈θ〉 of the

four runs. With this in mind, comparing metrics in Figure 5.7 leads to the

following conclusions for IOP09:

• Advections and subsidence have a limited effect on BL growth, with

advections contributing a larger impact

• And, these motions appear to have a significant impact on the devel-

opment of the potential temperature ML mean, also mostly driven by

the effects of advections

5.2.4 IOP11 (Figure 5.2; Appendix C.4)

Figure 5.8: Statistical metrics for Experiment 1: IOP1

After IOPs 08, 04 & 09, the next best performing ‘A-Off/S-Off’ scenario

is IOP11. Though RMSE is approaching 500 m and ME shows an overestima-

tion, the CORR for this day is very high; the highest seen in Experiment 1.
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While it is possible that this value may be inflated due to low sample size

(5 flights), visual analysis of IOP11 in Figure 5.2 shows observed BL heights

rising and the CLASS model rises to match. Even the inflection in curvature

present at 10:29 UTC is reflected in the red curve. In fact, it is likely that the

CORR for this curve could be even higher. Automatic criteria at 17:24 UTC

for IOP11 in Figure 5.2 spreads, and the vertical profiles at this time (Figure

5.9) are similar to those seen in the evening hours of Figure 5.4 (IOP08),

once again leaving determination of exact height up to interpretation. There

is also a high correlation for potential temperature ML mean, with RMSE

below campaign average for the same.

Figure 5.9: Virtual Potential Temperature profiles of IOP11 (05

July 2011). SUMO profiles on the left (with 3-point moving av-

erage applied), with ML approximations on the right.
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With the introduction of subsidence, as IOP11 has mostly negative di-

vergence throughout, BL growth is enhanced and the ‘A-Off/S-Vary’ run

reaches a maximum height of 3.6 km, more than 3.5 times the maximum ob-

served. Though BL height is grossly overestimated in this model run, ML

mean potential temperature estimates have dropped, causing RMSE and ME

to reach Experiment bests. The thicker layer allows energy to spread over a

larger height (volume), a concept represented by Equation 5.5 (Vilà-Guerau

de Arellano et al. 2015, p.25-26).

∂〈θ〉
∂t

=
(w′θ′)s − (w′θ′)e

zi
+ θadvBL

(5.5)

Since in this run θadvBL
= 0, as BL height, zi, becomes larger, the tendency

of 〈θ〉 will decrease.

It is under these circumstances that a small, and yet very interesting,

change in 〈q〉 occurs between ‘A-Off/S-Off’ and ‘A-Off/S-Vary’. RMSE im-

proves and underestimation also shrinks, an effect that is counter to what is

seen in 〈θ〉. To properly understand the process, the steps to the process must

be broken down. Firstly, the BL is uplifted with, and not through, the FA.

This uplifting enlarges zi in Equation 5.5, decreasing the tendency of 〈θ〉 (as

θadvBL
= 0). This diminished 〈θ〉 acts to decrease the buoyancy flux through

Equation 5.4 (as SH and LE are based on prescribed values). The buoyancy

flux is proportional to the entrainment velocity, we, as it can be thought of

as the strength of the large eddies, which drive entrainment (Vilà-Guerau de

Arellano et al. 2015, p.44). Weaker eddies lead to less entrainment, therefore,

less dry air is entrained into the ML and 〈q〉 increases. The same process also

works upon 〈θ〉, but to the opposite development (less warm air is entrained

down, further decreasing the diminished 〈θ〉.
However, when analysing results with only advections, 〈θ〉 switches from

over- to underestimated, as advection brings in cooler air for the entire sim-

ulation period. This cooler air reduces buoyancy and the effect of this can
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be seen in the ‘A-Vary/S-Off’ BL height. This run approximates observed

BL heights well, displaying a RMSE of only 225 m, the lowest amongst ad-

vection only runs. When time-dependency is applied for both subsidence

and advection, the impacts of the two combine and an intermediary curve

is produced; one which shows some influence from ‘A-Vary/S-Off’, but more

closely parallels ‘A-Off/S-Vary’. The outcomes of this combination are as

follows:

• Advection and FA vertical motion have a extremely significant ef-

fect on BL growth, with the two contributing opposite tendencies, and

uplifting dominating

• And, these motions have a significant impact on the development of

ML variables means, mostly driven by the effects of advections

• As advection and subsidence act to underestimate these ML means,

while significantly overestimating BL heights, other processes must

be acting on the BL

5.2.5 IOP03 (Figure 5.1; Appendix C.2)

Figure 5.10: Statistical metrics for Experiment 1: IOP03
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IOP03 ‘A-Off/S-Off’ has BL height error metrics only slightly worse than

IOP11, though with a much lower CORR. This discrepancy is due to ob-

served IOP03 values exhibiting a much more diurnal pattern than IOP11,

peaking at around 17:00 UTC before dropping back down. This pattern is

not reflected in ‘A-Off/S-Off’, nor in any of the other three runs, especially

due to the predominant negative divergence during this day. So with the in-

troduction of subsidence, the ‘A-Off/S-Vary’ curve can be seen rising above

and diverging from the red ‘A-Off/S-Off’ curve after 15:00 UTC. This in-

creased overestimation in BL height only slightly differentiates 〈θ〉 and 〈q〉
metrics in ‘A-Off/S-Vary’ from ‘A-Off/S-Off’, and in a very similar manner

as described in IOP11.

ML mean metrics do change more significantly in the ‘A-Vary/S-Off’ set-

up. Prevalent cool air advection leads to the RMSE and ME of 〈θ〉 decreasing

while CORR improves, though the model run is still warmer than observa-

tions. Buoyancy in the BL is decreased by cool air advection (Equation 5.4),

and is reflected as a lowering of BL height. With the strongest mean specific

humidity advection occurring near the start of the simulation, 〈q〉 immedi-

ately rises, contrary to both observations and ‘A-Off/S-Off’. Overestimated

〈q〉 may be explained by inspection of the MesoNH specific humidity ad-

vection timeseries (Figure 5.11). CLASS was initialised at 12:11 UTC and

during this time, strong specific humidity advection is taking place in the

upper BL. IOP03 can be summarized as:

• Large-scale vertical motion has an extremely significant effect on

BL growth, with this uplifting overwhelming the effects of advection

• Advections produce a noticeable improvement in potential tempera-

ture ML mean, but also produce significant differences in the same

for specific humidity

• Other processes must be working to cool, dry, and lower the BL
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Figure 5.11: 3D Specific humidity advection evolution of IOP03

(20 June 2011) (left). Observed BL heights are indicated with ×,

with linear interpolations between as dotted lines. Dashed line

indicates time of vertical profile (right). Green dots are MesoNH

model levels, and pink dashed line is the spatial average of the

pink shaded area, over the model depth.

5.2.6 IOP10 (Figure 5.2; Appendix C.4)

With respect to BL height RMSE, IOP10 has the next best performing ‘Off’

scenario, though it is among the worse performing half of the IOPs. RMSE

nears 600 m, with the red curve for IOP10 in Figure 5.2 increasing almost

linearly, as observed BL heights show a diurnal pattern akin to that seen in

IOP03. Such mismatch results in a very low CORR and a level of overestima-

tion so-far unseen. Despite the large differences in BL height, errors in ML

means for potential temperature and specific humidity are well below cam-
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Figure 5.12: Statistical metrics for Experiment 1: IOP10

paign averages. BL height RMSE worsens when subsidence is introduced in

‘A-Off/S-Vary’, though ME remains almost unchanged. This small difference

likely stems from the fact that the average of the daily subsidence evolution is

on the order of −10−6, about 5% of the maximum seen for the day, and small

enough to explain such a small change as 3 m (see Appendix D.9). RMSE

experiences a larger change, as undulations in subsidence take modelled BL

height above ‘A-Off/S-Off’ towards the end of the simulation, just as ob-

served BL heights are dropping, making the model run an even less accurate

representation. Much more significant changes come about in ‘A-Vary/S-

Off’. BL height errors decrease substantially, as a weak CORR develops.

Similarly to IOP09, this is due to the initially strong but then weakening

advection of cold air. Cooler air reduces buoyancy and results in the lowered

green curve. Unfortunately, this cooling lowers 〈θ〉 well below observations,

and switches a strong correlation to a strong anti-correlation. Activating

moisture advection has the opposite effect, with underestimation turning

into overestimation. When both advection and subsidence are implemented,

the effects amalgamate to form a BL height estimate that appears similar

to ‘A-Off/S-Vary’ oscillating about ‘A-Vary/S-Off’, while ML means differ

little from ‘A-Vary/S-Off’. Therefore, the following conclusions can be made
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about IOP10:

• Advection and subsidence have a noticeable influence on BL growth,

with advections contributing moreso

• Advections also have a significant impact on ML mean development,

while changes due to subsidence are limited

• As advection and subsidence act to significantly underestimate 〈θ〉,
other processes must be acting on the BL

5.2.7 IOP05 (Figure 5.1; Appendix C.2)

Figure 5.13: Statistical metrics for Experiment 1: IOP05

IOP05 is the first day that has RMSE and bias in ‘A-Off/S-Off’ exceed-

ing the observed BL heights for the day. This base model run does not

even capture the shape of the BL height evolution, as corroborated by a

low CORR. RMSE and ME for potential temperature ML mean are also

well above campaign averages, while those for specific humidity are on par.

CORR for the two are robust, indicating that the trend in the evolution of

〈θ〉 and 〈q〉 is represented, albeit with an over and under estimation, respec-

tively. The addition of cool air advection in ‘A-Vary/S-Off’ improves RMSE
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and ME metrics for potential temperature, with post-18:00 UTC differences

keeping them from dropping further. Until this point, model estimates did

not stray father than 0.3 K away from observations. This is due to a sharp

intensification of cool air advection at 18:00 UTC (not shown), causing 〈θ〉
to fall away from the observed trend. This cooling leads to a noticeable drop

in BL height for this model run, however, this run also has 〈q〉 escalating

well beyond observed values, as moisture advection is positive for almost the

entire simulation.

‘A-Off/S-Vary’ seriously improves BL height reproduction over ‘A-Off/S-

Off’, cutting the observed errors by 80%, and boosting CORR from almost

insignificant to strong. This improvement comes from strong positive diver-

gence throughout the entire simulation time, with particularly strong subsi-

dence after 16:30 UTC. This BL height decrease raises the potential tempera-

ture ML mean above the ‘A-Off/S-Off’ curve, in the opposite manner as that

described in IOP11. Interestingly, the compression is significant enough, and

possibly the BL thin enough, to dominate the effects of enhanced dry air en-

trainment and 〈q〉 actually rises above ‘A-Off/S-Off’. When both large-scale

forcings are applied, 〈θ〉 adopts the shape of ‘A-Vary/S-Off’, but is raised

above it due to the effects of ‘A-Off/S-Vary’, although still below ‘A-Off/S-

Off’. Meanwhile, 〈q〉 is completely dominated by advection effects. The two

work together to lower the BL height even closer to reality, reducing RMSE

to within 100 m. Just as with 〈θ〉 in ‘A-Vary/S-Off’, these metrics would be

even better if only considering observation pre-18:00 UTC. This finding of

large-scale forcings having a significant impact on BL development during

IOP05 is corroborated by the conclusions of Pietersen et al. (2015). The

outcomes for IOP05 can be summarized as:

• Advection and subsidence have a significant influence on BL growth,

mainly driven by large scale divergence aloft
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• The overall effect of large-scale forcings on potential temperature ML

mean is noticeable

• Specific humidity ML mean is significantly overestimated by advec-

tion, in relation to both large-scale forcing free conditions and observed

values

5.2.8 IOP02 (Figure 5.1; Appendix C.1)

Figure 5.14: Statistical metrics for Experiment 1: IOP02

Errors in the ‘A-Off/S-Off’ runs of the as yet undiscussed IOPs quickly

escalate. All six error metrics for IOP02 exceed campaign averages, with

only potential temperature ML mean CORR displaying a favourable value.

This only indicates that the general trend of the evolution is represented, but

overestimates 〈θ〉 while doing so. On the other hand, specific humidity ML

mean is underestimated, while also being anti-correlated. But of the three

parameters, BL height is the worst performer. From the starting height of

870 m, the modelled height rises near linearly to over 2000 m by the end of

the simulation time. Overall, outcomes of IOP02 are:

• Advection and subsidence have a significant effect on BL growth,

while having noticeable effect on ML means
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• Or, it is possible that advection and subsidence were extremely sig-

nificant and partially checked by other processes, or, they were

limited and other processes dominated development and growth

5.2.9 IOP06 (Figure 5.1; Appendix C.3)

Figure 5.15: Statistical metrics for Experiment 1: IOP06

Though IOP06 has the second worst performing ‘A-Off/S-Off’ for BL

height, the changes observed by including advection and subsidence are

among the most interesting of all the IOPs studied. Initial inspection of

‘A-Off/S-Off’ BL height shows exactly what the RMSE and ME signify; an

overinflated estimation, reaching almost 1900 m by the end of the simulation,

well above the observed 230 m. ML mean potential temperature is also over-

estimated and with a mid-range anti-correlation, due to the fact that while

this model run has 〈θ〉 increasing in time, observed 〈θ〉 actually drop. Spe-

cific humidity ML mean is the only parameter well-represented by CLASS,

with a small negative bias and a RMSE well below campaign average. Unfor-

tunately, adding advective effects in ‘A-Vary/S-Off’ nullifies this favourable

representation of 〈q〉, resulting in the largest 〈q〉 RMSE of the campaign.

Though, inclusion of advective forcings does result in improved metrics for



Chapter 5. Experiment 1: Advection & Subsidence Influence 55

〈θ〉. Errors decrease and a strong CORR develops, as cool air is advected into

the BL. This cooling reduces BL height errors, however not anywhere near

the required levels as to be considered an accurate facsimile of observations.

However, ‘A-Off/S-Vary’ is the run that makes IOP06 so interesting. It is

on this day that divergence achieves its maximum strength, on the order of

10−4 s−1. Though BL height metrics do not impart any special significance to

this run, visual analysis reveals an intriguing pattern. Despite only producing

a mid-range CORR and still being overestimated, the CLASS model output

produces a curve appearing very close to the pattern made by the observed

heights, especially considering the ‘uptick’ after 19:00 UTC. Cause for this

‘uptick’ can be seen in Figure 5.16, as a yellow-red streak above the BL at

around 20:00 UTC. Additionally, the strong subsidence occurring after 15:30

UTC also matches very well with observations. It is this subsidence, and

subsequent lowering of the BL height, which raises 〈θ〉 above the ‘A-Off/S-

Off’ model run, slightly worsening its metrics. Metrics for 〈q〉 remain mostly

unaffected, with minimal improvement in ME. This slight improvement is

a result of the same process occurring in IOP05 ‘A-Off/S-Vary’, where the

effects of increased dry air entrainment are overpowered by the decrease in

height (volume).

When the two forcings are combined, the ensuing modelled BL height

curve retains the shape of ‘A-Off/S-Vary’, but is further lowered due to cool

air advection. Though the errors for this curve are far from eliminated by this

combination, the absolute reduction in RMSE is the largest of the campaign.

ML means approximate the curves of ‘A-Vary/S-Off’; a desirable outcome

for 〈θ〉, but less so for 〈q〉. Conclusions regarding IOP06 are:

• Large-scale forcings play a significant role in BL growth, with subsi-

dence prevailing and advection supplementing

• Subsidence has a limited effect on both potential temperature and
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specific humidity ML means, while advections have a noticeable and

significant impact, respectively

• As ML means and BL heights are over-estimated, other processes, such

as those at the surface, must be cooling, drying and lowering the BL

Figure 5.16: FA vertical motion evolution of IOP06 (26 June 2011)

(left). Observed BL heights are indicated with ×, with linear

interpolations between as dotted lines. Dashed line indicates time

of vertical profile (right). Green dots are MesoNH model levels,

and pink dashed line is the spatial average of the pink shaded

area, from BL height to 2.37 km (model level just below 2.5 km).
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Figure 5.17: Statistical metrics for Experiment 1: IOP07

5.2.10 IOP07 (Figure 5.2; Appendix C.3)

And the worst performing ‘A-Off/S-Off’ of the study is IOP07. And though

IOPs were covered in best-to-worst order of BL height RMSE, IOP07 would

end the list for most of these metrics. BL height estimates fly far above

measured values, doing nothing to reproduce the post-14:00 UTC decay ob-

served, ending the simulation at near 2100 m. Potential temperature ML

mean is also drastically overestimated, while specific humidity ML mean

scarcely changes throughout the model run. Similarly to BL height, neither

〈θ〉 nor 〈q〉 come close to sufficiently approximating observations. As such,

deductions for IOP07 are:

• Advection and subsidence have a significant effect on BL growth and

development

• Or, these forcings were extremely significant and partially checked

by other processes

• While still possible, it is deemed unlikely that advection and subsidence

played a limited role in BL growth and development for this day
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5.3 Summary

As mentioned in Chapter 2, the MesoNH dataset has been assumed to match

reality. CLASS model outputs using the dataset, such as those seen for sub-

sidence and potential temperature advection on IOPs 05 & 06, are encour-

aging signs for the legitimacy of this assumption. However, introduction of

MesoNH advection causes potential temperature on IOPs 09 & 10 to become

anti-correlated and underestimated as compared with observations. Addi-

tionally, IOPs 03 & 11 have negative divergence in the FA, leading to BL

lifting, a condition specifically not targeted by BLLAST. Utilizing prepared

IOP summary documents (Blay-Carreras 2014, Nilsson 2011), the cause of

this uplifting was investigated. Unfortunately, strong reasoning was not dis-

covered, though since MesoNH is a mesoscale model, it is possible that sub-

synoptic scale influences, such as local effects from the Pyrenees Mountains

(a theory corroborated by Pietersen et al. (2015)), led to the uplifting. It is

also possible that IOPs 05 & 06 represent circumstances which MesoNH was

able to recreate accurately, making them the exception and not the trend.

Furthermore, IOPs 03, 05 & 06 had substantial overestimations of ML

mean specific humidity as compared to observations, with IOP06 ending up

with almost double the moisture content by the end of the simulation. This

over-moistening may be caused in part by a slight discrepancy between the

best deemed BL height estimate using SUMO measurements, and those in-

herent in the MesoNH model. This mismatch is an example of one of the

biggest challenges faced by integrating multiple datasets toward a common

purpose; disagreement between boundary conditions. This conundrum can

be summed up with a simple analogy: needing lemon juice, but only having

limes to squeeze. Some may say they are so similar as to be interchange-

able, but ultimately, their small differences could alter the final result. The

resolution of this problem involves a non-trivial increase in complexity and
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Figure 5.18: 3D Specific humidity advection evolution of IOP06

(26 June 2011) (left). Observed BL heights are indicated with

×, with linear interpolations between as dotted lines. Triangles

denote BL height estimates found using virtual potential temper-

ature profiles from MesoNH, and Criteria 2 (see Section 4.1.1).

Dashed line indicates time of vertical profile (right). Green dots

are MesoNH model levels, and pink dashed line is the spatial

average of the pink shaded area, over the model depth. Triangle

marked green line shows estimated BL height from MesoNH data.



Chapter 5. Experiment 1: Advection & Subsidence Influence 60

effort, for what might be little gain. Figure 5.18 shows 3D specific humidity

advection evolution for IOP06, as well as a vertical profile of the same at

13:00 UTC. Implementing Criteria 2 (see Section 4.1.1) on virtual potential

temperature profiles calculated from the MesoNH dataset, it is revealed that

while discrepancies do exist (one model level in Figure 5.18), their impact

may be minimal. While the difference in the late afternoon transition may

appear substantial, it should be taken into account that × represents the

top of the RL. Ultimately, the calculation and confirmation of MesoNH BL

heights was deemed outside of the scope of this study and advections were

obtained using the best deemed BL height estimates found with SUMO.

5.4 Applying large-scale averages

As mentioned in Section 3.2, the standard version of CLASS only allows for

application of constant subsidence and advection. Pietersen et al. (2015)

implemented a time-dependent scheme for subsidence when studying IOP05,

being derived from observations (Pietersen et al. 2015, p.4249), though this

had limited temporal variability, and advections were still treated as con-

stants. With the availability of the MesoNH dataset, and a finer resolution

of advection and subsidence information, this project was able to create a

more detailed evolution. Earlier versions of this thesis involved analyses fo-

cused between model runs with averaged large-scale forcings, ‘Const’, and

varying runs, ‘Vary’. It was revealed that BL height (ML means) would

approximate one another if subsidence (advections) oscillated about the av-

erage, minimizing the overall net effect. Additionally, for all six IOPs with

large-scale data, ‘Const’ and ‘Vary’ BL heights would end reasonably close

to one another by the end of the simulation.

Distinct differences would manifest only if these forcings were predomi-

nantly monotonic (as in Figure 5.19), and of sufficient strength. In regard to
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(a) Subsidence and advection evolutions (b) CLASS model output

Figure 5.19: (a) Comparisons between constant and time-

dependent divergence (i.e. subsidence) (left) and potential

temperature and specific humidity advections (right), from the

MesoNH outputs, for IOP06 (26 June 2011) (b) CLASS model

output with ‘Const’ run having constant averaged values for sub-

sidence and advection applied

BL height, IOP06 is the most distinct of the six MesoNH IOPs. ‘Const’ and

‘Vary’ runs for this day differed up to 430 m between 15:00 and 15:30 UTC,

highlighting the impact that differences between the two setups have in the

early afternoon. These comparisons emphasise the significance of introducing

detailed time-dependency.



6 Experiment 2: Sensitivity to

Initial Conditions

An important aspect of the analyses was to investigate how sensitive the

CLASS initialisation was to the use of information from different SUMO

flights. How well BL heights, and ML means of potential temperature and

specific humidity converge across multiple initialisation times can help to

give an indication of the quality of the large-scale advection and subsidence

data, as well as the representativeness of the selected SUMO profile for an

appropriate initialisation. As the differences between the first choice run

(“#1”; red curve in Figure 6.1) and observations have already been discussed

in Experiment 1, this chapter focuses moreso on the differences between the

runs initialised by SUMO profiles at different times. Run #1 was designated

as a control run, and was subsequently subtracted from the two test runs

initialised by different SUMO profiles (“#2”, green curve and “#3”, blue

curve). The differences were then analysed for BL heights (Figure 6.1), and

ML means of potential temperature and specific humidity (Appendix E).

The model results for the six investigated IOPs were, for an objective

analysis of the comparison, grouped into the separate categories of “conver-

gent”, “paralleling”, or “divergent”. These categories were based off of the

following criteria:

62
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Figure 6.1: CLASS model runs for Experiment 2. Legend entries

for lines correspond to choices in Table 4.3 in Section 4.2.2. (Jump

to: IOP03, IOP05, IOP06, IOP09, IOP10, IOP11)
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Convergent If a run is within 50 m/0.5 K/0.5 g kg−1 of the control by the

end of the simulation time

Paralleling Though criteria for convergence is not met, the derivative of

the difference between run and control becomes near zero, for the lat-

ter half of the simulation time

OR

a run with a non-zero derivative works to reduce differences, for the lat-

ter half of the simulation time, but still falls outside defined thresholds

for convergence

Divergent A run is neither convergent nor paralleling.

Once the individual performance of each parameter was gauged, an overall

classification was assigned to each IOP.

6.1 Discussion

6.1.1 IOP03 (Figure 6.1; Appendix E.1)

Almost all runs across all parameters on IOP03 converge, with only the

#2 run just barely failing to meet the criteria for convergence, ending up

64 m away from the control by the simulation endtime. Even then, this run

parallels the control for the majority of the run. Having multiple parameters

converge, or nearly converge, can infer that both model initialisations and

large-scale forcings are consistent with one another. This means that the

advections and subsidence generated by MesoNH help to modify the BL

development, so as to guide model estimates towards the observations at later

initialisation times. The ML means for IOP03 in Appendix E.1 exemplify

this point. The green curves pass through the initialisation points of the blue

curves, which both in turn pass very close to the initialisation points of the
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red curves. The #2 specific humidity curve even deflects downward around

11:00 UTC to match better with the control starting value. Such alignment

is not present in BL height estimates, though both test runs are paralleling

the control by 15:00 UTC.

It is worth noting here that the word “convergent” is being used slightly

modified from its conventional definition, which would be that the difference

between test and control is decreasing with time (i.e. test and control are

Figure 6.2: (Upper) Differences between test and control runs for

BL heights, and ML means of potential temperature and specific

humidity on IOP03. Text along bottom left of figures indicate dif-

ferences between runs at start, while bottom right has the same

at end, in matching colours. Threshold values for convergence cri-

teria are dotted black lines above and below red control. (Lower)

First derivatives of differences to test for paralleling criteria.
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closer at the end than at the start). By this definition, BL heights for both #2

and #3 runs are convergent, as can be seen in Figure 6.2. However, the same

definition would classify #3 ∆〈θ〉 as divergent, simply because it’s hardly

possible to get any closer, and unrealistic to expect it to do so. Though this

Experiment does focus on the sensitivity of CLASS to the choice of SUMO

initialisation profiles, it is not a true sensitivity analysis, whereby a small per-

turbation/change is introduced to a single parameter. Initial displacements

to any one of the three parameters are not perturbations to the initialisation,

as the other two measures are able to change. It is for this reasoning that,

for the purposes of this Experiment, convergent be redefined as the criteria

in Section 6.1, and #2 ∆zi be classified as paralleling. Though this run does

have the positive attribute of ending within the convergent threshold of #3

∆zi, its classification is unaltered, since a consistent “ruler” (#1 aka “Vary”

in Experiment 1) must be maintained. However, this extraneous result does

help to reinforce the assertion that IOP03 is modelled under a well-balanced

initialisation and evolves under stable large-scale forcings.

As IOP03 is one of the two days to develop under mostly negative FA

divergence, it is possible that the enlarged BL is damping the generation of

differences. This is especially possible for those that might arise in 〈θ〉 or

〈q〉, as tendencies of these are inversely proportional to zi (Equation 5.5, for

example).

6.1.2 IOP05 (Figure 6.1; Appendix E.2)

Whereas IOP03 #2 BL height was the only parameter to not converge, the

same parameter for IOP05 is the sole converger, and only just by 1 m. Nei-

ther ∆〈q〉 runs converge, despite #2 being very close, though both can be

described as paralleling the control run, as can ∆〈θ〉 runs. These last two

are within the convergent threshold of each other, an encouraging sign as to
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Table 6.1: Differences between test run and control, at start and

at end for measured parameters, for IOP05

Test

run

∆zi [m] ∆〈θ〉 [K] ∆〈q〉 [g/kg]

Start End Start End Start End

#2 87 49 -0.64 -1.13 -0.25 -0.52

#3 14 72 -1.24 -1.55 -1.13 -1.41

the stability of this particular day. #3 ∆zi fails to meet the definition for

convergence, though differences between run and control are ever decreas-

ing from 17:00 UTC onwards. This non-zero rate disqualifies the run from

fulfilling the first test for paralleling, however, it does pass the second test.

This second test was designed with runs such as this one in mind, as given

a longer simulation it is possible the run would achieve convergence. So to

describe such a run as divergent would be counter-productive to the purpose

of this experiment.

With 5 out of 6 parameters paralleling, and the shapes present in Fig-

ure 6.1 and Appendix E.2, it can be said that even though natural BL devel-

opment and large-scale forcings create initial displacements, these displace-

ments are not sufficiently large enough to accumulate and begin to feedback

upon themselves. Of course, there are more parameters than just ∆zi, ∆〈θ〉
and ∆〈q〉, where differences between the model runs may exist. Strengths

of temperature and moisture inversions (∆(∆θ) and ∆(∆q)) may also vary

between runs, as can ∆〈u〉 and ∆〈v〉. However the previous assessment of

ML profiles and large-scale forcings creating a stable configuration across all

of IOP05, still stands.
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6.1.3 IOP06 (Figure 6.1; Appendix E.2)

Of IOPs included in Experiment 2, IOP06 shows the most sensitivity to

initialisation. As can be seen in Figure 6.3, only the blue #3 ∆〈q〉 run sur-

passes the convergence threshold, and it does so just within the last hour of

the simulation. All other runs and parameters diverge, doing so decisively

(see Figure 6.3). #2 ∆〈q〉 does intersect the control run, however it quickly

spreads away and ends outside of the convergent threshold. The lead up to

this undershooting, and overshooting in #2 ∆〈θ〉 and ∆zi, begins between

18:30-19:00 UTC, corresponding with a weakening of subsidence, eventually

turning to uplifting. Though all runs are experiencing the same FA forcings,

the unique configuration of parameters, even those beyond the three in Fig-

ure 6.3, results in an entrainment velocity peak 3 times greater than what is

Figure 6.3: As in Figure 6.2, but for IOP06.
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present in the control run. Entrainment velocity is representative of the ex-

change rate between FA and BL (Vilà-Guerau de Arellano et al. 2015, p.28).

Higher exchange rates pull down more warm, dry air from aloft, and mix it

into the BL, exactly as is seen in Figure 6.3 and Appendix E.2. A hotter BL

means increased buoyancy, which enables the BL height to grow even faster,

as is seen in Figure 6.1 and Figure 6.3. #2 seems to be an unstable regime of

large-scale forcing and ML initialisations in CLASS, with initial differences

growing on one another, and eventually leading to divergence.

#3 does not exhibit the same degree of instability, with one measured

parameter achieving convergence, while the other two diverge, though to a

lesser extent than #2. Overall, it is thought that the strength of the large-

scale forcings, which are among the most extreme of the MesoNH IOPs, is

causing separate initialisations to diverge from one another.

6.1.4 IOP09 (Figure 6.1; Appendix E.2)

Table 6.2: Differences between test run and control, at start and

at end for measured parameters, for IOP09

Test

run

∆zi [m] ∆〈θ〉 [K] ∆〈q〉 [g/kg]

Start End Start End Start End

#2 -166 60 2.69 2.74 -0.02 0.22

#3 -443 -369 1.28 1.91 1.37 1.18

IOP09 includes the largest difference between initialisation times, span-

ning almost 7.5 hours. Despite this, the #2 ∆〈q〉 run still manages to reach

convergence, though as can been seen in Appendix E.2, convergence involves

maintaining near constant moisture. The #2 ∆zi run comes close to con-

vergence, but is ultimately classified as paralleling. Three other runs are

classified as paralleling: #2 ∆〈θ〉, #3 ∆〈q〉, and #3 ∆zi. The #3 run is
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characterized by the largest ∆zi displacements of the Experiment, approx-

imately 400 m lower than the control run. This underestimation is due to

strong FA divergence aloft and cold air advection in the morning around

07:00 UTC, both of which work to inhibit BL growth.

The only divergent run of IOP09 is #3 ∆〈θ〉, which eventually runs near

parallel with the control, but only for the last 2 hours of the simulation time.

When compared to observations (Appendix E.2), however, the run has much

better statistical metrics than the control, which has an anti-correlation with

observations. The higher than control temperatures present in #3 ∆〈θ〉 are

likely due to the lower BL heights present in this run, increasing tendency of

∆〈θ〉 (Equation 5.5). Though this improvement is noted, its presence does

not alter its classification in this Experiment.

6.1.5 IOP10 (Figure 6.1; Appendix E.3)

Table 6.3: Differences between test run and control, at start and

at end for measured parameters, for IOP10

Test

run

∆zi [m] ∆〈θ〉 [K] ∆〈q〉 [g/kg]

Start End Start End Start End

#2 15 48 0.68 0.56 -0.55 -0.36

#3 -3 105 1.92 1.38 -0.67 -0.12

The #2 run converges or nearly converges across all three measured pa-

rameters, with ∆〈θ〉 falling 0.06 K outside the criteria threshold. The #3 run

for the same is further outside the threshold, but as its displacement from

the control run is ever-decreasing over the course of the simulation, it is clas-

sified as paralleling. As can be seen in Appendix E.3, ∆〈θ〉 runs evolve with

limited variability in temperature, as do ∆〈q〉 runs, which converge with the
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control run. And though #3 ∆zi does not converge, the run does parallel

the control for the latter half of the simulation.

In a similar fashion as IOP05, the large-scale forcings and ML initialisa-

tions neither seriously enhance nor substantially reduce initial displacements.

6.1.6 IOP11 (Figure 6.1; Appendix E.3)

Table 6.4: Differences between test run and control, at start and

at end for measured parameters, for IOP11

Test

run

∆zi [m] ∆〈θ〉 [K] ∆〈q〉 [g/kg]

Start End Start End Start End

#2 -133 -327 1.90 2.11 -1.30 -0.93

#3 -30 17 -0.69 -0.76 0.79 0.92

IOP11 FA uplifting is comparable to that present in IOP03. But the fact

that only one measured parameter (#3 ∆zi) converges, indicates that the

combination of the large-scale forcings and the natural development of the

BL are not as balanced as for IOP03. This is especially poignant, as the #3

test run only precedes the control run by less than half an hour, and yet ∆〈θ〉
and ∆〈q〉 simply parallel the control. The same is true for ∆〈θ〉 and ∆〈q〉
of the #2 test run. #2 ∆zi is the sole diverger, ending the simulation more

than 300 m below the control. This divergence is strongest in the first half of

the simulation, as growth of the control is outpacing the growth of #2. This

can be explained with Equation 6.1, which describes the BL height growth

rate.
∂zi
∂t

= we + ws = we −Div(UFA)zi (6.1)

As Div(UFA) is negative for the entire day, and initial we and zi are both

smaller in #2, the growth rate is inhibited, and hence the run diverges from

the control and #3 run.
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6.1.7 Summary

Of the six IOPs with subsidence and advection data, four (IOPs 05, 09, 10 &

11) show mostly neutral reactions to changes to initialisation, where mea-

sured differences parallel each other, or may even slowly improve. Three

of these days display mostly linear evolutions of ML means, with the excep-

tion of IOP05, which impressively has all three runs paralleling each other,

despite the non-linear nature of their development (see Appendix E.2).

Similarly, IOP03 has convergence across non-linear growth, though

some initial displacements barely exceed the convergence threshold. Ad-

ditionally, it is possible that uplifting present on this day suppressed the

growth of differences, though comparable uplifting did not produce the same

results for IOP11. Nevertheless, IOP03 exhibits stable reactions to changing

initial conditions.

Alternatively, IOP06 shows signs of instability when differences in initial

conditions are introduced. Due to the significant large-scale forcings present

on this day, it is thought that these work to amplify small differences in

initialisations, causing a cascade of changes which culminate in divergence

by the end of the simulation.



7 Experiment 3: Areal Aver-

aging Effects

While large-scale forcings can exert great impact on BL growth and devel-

opment, surface processes can have extensive effects as well. The SH and

LE fluxes and their relative importance are key variables for the convective

growth. Surface horizontal land use and surface characteristics have a large

influence on the magnitude of these fluxes. An asphalt parking lot will have

very different diurnal fluxes as compared to an irrigated corn field. This

influence becomes particularly important when modelling over an area of

heterogeneous surface types, as this heterogeneity can induce secondary cir-

culations which are superimposed on the BL scale circulation.. As MLMs

assume no horizontal gradients in the BL, inhomogeneous surfaces pose a

painstaking problem. One approach involves averaging the different fluxes

of various surfaces in a particular area, thereby blending the various magni-

tudes into a representative value for SH, or LE, to pass to CLASS. However,

this approach seems to address one problem, while simultaneously creating

another: how large should the area be?

Answering such a question is no small task. The effects of heterogeneity

size on the BL have been investigated by van Heerwaarden et al. (2014),

and BLLAST heterogeneity has been treated as an advective process by

Cuxart et al. (2016). However this chapter will not explicitly concentrate

73
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on the size or shape of any one heterogeneity, nor transform their influence

into advection, but moreso focus on how far the heterogeneity was from the

launch site of the profiler. Figure 7.1 provides a basic illustration of this

concept. Staying on a completely homogeneous surface (red field), fluxes

do not vary across the same surface. When a profiler, such as a SUMO,

is launched (white dot), one central question arises: How large must the

distance (d) from a differing surface (blue field) be, for that surface to not

influence the profile obtained? The axis units in Figure 7.1 emphasise this.

Whether the differing surface was on the order of 20 m or 20 km away would

affect the certainty of one’s answer. The question can be rephrased to, given

an area centred around a profile site, how does the proportion of surface type

included in that area relate to its effect on the profile?

Such a question invokes thoughts of the “flux footprint”, a concept whereby

flux measurements taken at a point are not only affected by the surface im-

mediately underneath the sensor, but also different surfaces upwind of the

sensor. As Burba & Anderson (2010) succinctly summarize, “it is the area

Figure 7.1: Simple example illustrating two surface types (red and

blue), profile launch site (white dot) and distance between launch

site and blue surface (d, black line). Units are of any single order

of magnitude (e.g. 103 = km or 100 = m).
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‘seen’ by the [measuring] instrument”. Different approaches to calculating

the size of this footprint have been taken (e.g. Schuepp et al. 1990, Wilson

2015), but generally they are dependent on the height of the sensor, wind

speed, and wind direction. Given that a SUMO aircraft, or any profiler,

is an ever-rising measurement platform, and the wind information obtained

by SUMO is hourly at best, such a calculation involving heights and winds

would prove complicated and ultimately likely inaccurate.

The method applied in this Experiment detaches from such dependency,

and utilizes the “well-mixed” property of the MLM. By removing the pos-

sibility of horizontal gradients within the ML, the inclusion of all surface

types, and associated heat fluxes, within a particular domain size will blend

together and incorporate into a representative value for that domain. By

changing the domain size over which fluxes were averaged, the effects of land

surfaces further away from the launch site could be examined.

7.1 Experiment 3a: Coarse Areal Averaging

Effects

7.1.1 Results

Figures 7.2 and 7.3 show the CLASS model estimates of BL height for this

Experiment (Appendix F contains ML means). As evidenced by the position

of the red or purple curves, BL heights for all days reach their maximums

in the 4 km or 10 km runs. While differences between the runs do exist,

they occur while still mostly preserving the shape of the day. IOPs 02, 04,

07 & 08 compare changes of areal averages in the ‘A-Off/S-Off’ model run,

while the other IOPs utilize the ‘A-Vary/S-Vary’ scenario. Though it is an

average over a 10 km× 10 km domain, the MesoNH data was also taken to be

representative of large-scale forcings in the smaller domains for these days.
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Figure 7.2: CLASS model runs for Experiment 3, IOPs 02-

06. Later IOPs and description continued in Figure 7.3.

IOPs marked with “*” indicate Site #2. (Jump to:

Site #1: IOPs 02-04 & 08-11, Site #2: IOPs 05-07)
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Figure 7.3: CLASS model runs for Experiment 3, IOPs 07-11.

Legend entries for lines refer to the side lengths of the averag-

ing box (domain), centred on the launch site, for that partic-

ular run. IOPs marked with “*” indicate Site #2. (Jump to:

Site #1: IOPs 02-04 & 08-11, Site #2: IOPs 05-07)
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7.1.2 Discussion

Recalling from Table 2.1, SUMO flights on IOPs 05, 06 & 07 were launched

from Site #2, while the other IOPs launched from Site #1. The two sites are

separated by approximately 4.5 km, leading to the potential for distinctly

different surface proportions between the two sites, in particular at small

domain sizes; Figure 7.4 shows the location of the two sites relative to the

city of Lannemezan and each other. As smaller domains are characterised

by higher levels of homogeneity, the effects will be discussed in the order of

increasing domain size, starting with the 1 km scale, and ending with the

10 km run for continuity with respect to Experiments 1 & 2. As the surface

heat flux maps use 30 m resolution, and therefore do not always divide evenly

into the averaging domain sizes, actual domain sizes can differ by ±20 m. In

order to properly evaluate the effects of area averaging, this discussion will

Figure 7.4: Site locations and surrounding land uses. The city of

Lannemezan is the large pink area east of the sites.
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separate focus into IOPs of Site #1 and those of Site #2, rather than each

IOP day individually as was done for Experiments 1 & 2.

Site #1: IOPs 02-04 & 08-11 (Figures 7.2 & 7.3;

Appendix F.1-F.3)

Site #1 is situated to the northwest of Lannemazan, immediately surrounded

by predominantly grassland, moor and forest. As can be seen in Figure 7.5,

the vast majority of IOPs have the largest SH flux over forest, while grass

and moor are among the lowest and are of similar magnitude (Hartogensis

2015b). These last two make up about 76% of the 1 km box, whereas forest

contributes only 10%. Figure 7.6 shows land use proportions across the four

domains.

Expanding outwards to a 2 km domain, grass and moor proportions drop

Figure 7.5: Evolutions of (a) sensible heat flux, H, and (b) latent

heat flux, LE, measured over several surfaces at the different sites

for IOPs 00-11 (left-right) (modified from (Lothon et al. 2014,

p.10945))
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Figure 7.6: (Left) Land use proportions of Site #1. (Right) Rate

of change of land use between domain sizes. Colours in legend

apply to both figures.

to 67%, while forest has risen to 20%, its largest rate of increase across the

four domains. With other surface type distributions remaining mostly the

same, this approximately 10% switch to a higher SH flux can be seen as a

small increase in BL height in Figures 7.2 & 7.3 (for Site #1 IOPs). Though

this change in proportion is also applied to LE fluxes, there is less variability

in this flux among the surface types; the exception being urban surfaces (not

shown in Figure 7.5), which is consistently no more than half the magnitude

of the other surface types.

Additionally, going from a 1 km box to a 2 km causes ML means (Ap-

pendix F) for potential temperature to increase, while specific humidity de-

creases. This is true across all Site #1 IOPs, apart from IOP08, where the

converse occurs. IOP08 was characterised by cloudy sky conditions (Lothon

et al. 2014, p.10943), resulting in less incoming solar radiation reaching the

ground, as compared to the other IOPs. As well, rain was received during
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the two days prior to IOP08, allowing for ample availability of surface mois-

ture. When one compares the ratio of maximum LE to the sum of SH and

LE, aka. the Evaporative Fraction (EF) (Figure 7.7a), IOP08 is the only

IOP to show an increase from a 1 km to a 2 km domain. So of the reduced

incoming solar radiation that did make it to the surface, more was being par-

titioned to LE. This dual effect can be seen in Figure 7.5 for IOP08 (06/30),

with reduced forest SH. While the inclusion of more forest surface typically

acted to raise the mean SH on other days, inclusion of the wetted woods and

other surrounding area on IOP08 actually decreased the mean SH (effectively

switching blue and cyan curves in Figure 7.7b), resulting in a lowered 〈θ〉.
Despite the reduced SH, BL heights stayed largely the same, even slightly

increasing. The tendency of BL height is dependent on the entrainment

velocity (recall Equation 6.1), which is proportional to the buoyancy flux,

(a) EF of Site #1 IOPs (b) Surface Heat Fluxes of IOP10

Figure 7.7: (a) EF of the diurnal maximum as a function of do-

main sidelength (b) An example of averaged surface heat flux

evolutions over changing domain size.
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w′θ′v. The buoyancy flux is determined by both SH and LE (recall Equa-

tion 5.4). This signifies that the reduction in SH (≈3.5 W m−2) is more than

compensated by the increase in LE (≈10 W m−2).

Increasing domain once again, to 4 km, the urban surface proportion

shows its largest increase, up to 14%, along with forest (now at 31%), while

grass and moor continue dropping (down to 49%). The cumulative effect

of these relatively high SH surfaces causes the most rapid decrease of the

EF across all IOPs, due to both large increases of SH and diminishing LE.

Figure 7.7b shows the typical changes (IOP08 notwithstanding) in diurnal

maximums of surface heat fluxes for Site #1 IOPs; notice the large jump in

SH from 2 km to 4 km. SH reaches maximum values in the 4 km run while

simultaneously achieving minimum LE. ML means for potential temperature

and specific humidity follow accordingly, increasing and decreasing, respec-

tively.

However, the degree of change in SH and LE are not equal, with SH

increasing faster than LE is decreasing. This net increase in buoyancy flux

leads to BL heights in the 4 km run being higher than in the 2 km, sometimes

substantially, with mean differences between the two of up to 150 m and

maximum differences of up to almost 300 m. When compared to observations,

the 4 km model run contains most of the worst performing error metrics for zi

and 〈θ〉 (see Figure 7.7a), as well as EF minimums across all model runs (see

Figure 7.7). This EF minimum can help to explain the errors in modelled

BL height, which was almost entirely overestimated in Experiment 1. As

the combined energy from SH and LE stays mostly steady with the jump to

the 10 km domain, falling EF would be due to increased partitioning to SH,

which would result in a larger buoyancy flux, as its contribution to the flux

is more significant than LE. A larger buoyancy flux means an even greater

overestimation at 4 km. Though this difference from 10 km is small and 4 km

BL heights can be thought of as approximate to the 10 km heights.
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Figure 7.8: Statistical metrics for Experiment 3. X-Axis in each

figure is IOP number. (Upper) zi, (Middle) 〈θ〉, and (Lower) 〈q〉.
IOPs with profiles conducted at Site #2 are marked with “*”.
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To try and understand why BL heights remain generally steady from

4 km to 10 km domains, one must again analyse land use proportions and

their rates of change between domain sizes. Most derivatives (Figure 7.6

(left)) approach zero, except for grass, forest and urban. By expanding well

into the countryside to the northwest and completely engulfing the forest to

the south and west, forest increases to 37% of the total area and becomes

the dominant surface type. At the same time, urban land decreases to 9%,

causing a cancellation between two of the largest sources of SH. Owing to its

low SH, the slight changes occurring in grass proportions are insignificant,

compared to forest and urban, and there is little net change. This observation

is not only true for BL height, but also for 〈θ〉 and 〈q〉.

Site #2: IOPs 05-07 (Figures 7.2 and 7.3; Appendix F.4)

Site #2 is situated to the southwest of Lannemazan, with immediate sur-

roundings consisting mostly of moor, corn and urban lands. Moor makes

up 55% of the 1 km box, while corn is 31% (see Figure 7.9). For Site #2

IOPs, SH of moor and corn are of similar magnitudes. Along the edges of

the domain, urban surfaces contribute about 8%. While urban makes up less

than a tenth of the total land area, the peak of its diurnal SH curve is on the

order of 10 times that of moor/corn. Therefore its inclusion has a significant

effect on the mean SH.

When increasing the domain to 2 km, jumps in BL height can be seen

in Figures 7.2 and 7.3. Breaking down land usage, moor and corn percent-

ages have dropped substantially to 32% and 16%. Meanwhile, urban has

increased to 14%, while inclusion of surrounding wooded areas has caused

forest representation to surge from 3% to 24%. This incorporation of surfaces

with higher magnitude SH causes the mean SH to increase by more than 50%

compared to the 1 km domain, while LE decreases slightly (Figure 7.10b).

IOPs 06 & 07 actually show a doubling of SH peak from 1 km to 2 km, and
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Figure 7.9: (Left) Land Use proportions of Site #2. (Right) Rate

of change of Land Use between domain sizes. Colours in legend

apply to both figures.

a more significant drop in LE, as compared to IOP05. This causes a steeper

decline in EF (Figure 7.10a). And though all three curves in Figure 7.10a

match in shape, IOPs 06 & 07 are elevated above IOP05, indicating more

partitioning to LE. Whereas EF abnormalities in IOP08 could be explained

by the possibility of changing ground conditions induced by the precipitation

of the day before which provided ample moisture for LE, these three IOPs

are on consecutive days, with no precipitation reported between (Nilsson

2011, Blay-Carreras 2014). However, IOPs 06 & 07 are distinguishable in

a different regard: the highest observed temperatures of the campaign (see

Appendix F.4). Using the bulk aerodynamic formula for SH (Equation 7.1)

(Hartmann 1994, p.101), the strength of SH is dependent on the difference

between the temperature of the surface (T s) and the temperature of the ML

(T a).

SH = ρcpCDHU(T s − T a) (7.1)
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(a) EF of Site #2 IOPs (b) Surface Heat Fluxes of IOP05

Figure 7.10: (a) EF of the diurnal maximum as a function of

domain sidelength (b) An example of averaged surface heat flux

evolutions over changing domain sidelength.

With increased T a, the gradient between land and atmosphere decreases, and

SH drops. So the raised EF for these days is driven by changing SH, rather

than by LE, as was the case on IOP08.

Despite this dissimilarity in EF, all three days possess ML mean potential

temperature acting accordingly with the increase of SH from 1 km to 2 km,

climbing 1 K on average. While the decrease in LE is less substantial, 〈q〉 still

decreases by around 0.5 g kg−1, as enhanced buoyancy and BL growth have

entrained more dry air from aloft; the warming seen by 〈θ〉 is also enhanced

by this process. While such drying is beneficial for aligning the model run

closer with observations on IOPs 05 & 06, decreasing 〈q〉 on IOP07 only

further distances the model run from reality.

These same increases and decreases occur at the 4 km domain, although

less dramatically, as forest proportions rise to 35% and urban stays level
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at 14%. Spreading further into rural areas to the southwest, grassland has

increased to 20%, and moor has dropped to 24%. These changes in proportion

culminate to once again drive up the SH, pushing BL heights and 〈θ〉 further

from observations. As LE stays approximately the same as in the 2 km

domain, the EF bottoms out during the 4 km model run, a commonality

shared with Site #1. In fact, while some differences do exist between 4 km

and 10 km runs, these changes are minor and the effects of increasing domain

size to 10 km can be considered limited.

7.2 Experiment 3b: Fine Areal Averaging

Effects

Expanding upon the results of Experiment 3a, an analysis with higher res-

olution was conducted across different domain sizes. The introduction of a

finer grid interval was motivated by the goal of capturing at exactly which

domain size the changes observed in Experiment 3a occurred. Starting with

the 10 km domain, the box size was decreased by increments of 250 m, all the

way down to 250 m.

In Experiment 3a, IOPs were differentiated between Site #1 or Site #2,

which is the general vicinity from which they were launched. However, the

average location of the daily SUMO profiles could vary slightly between IOPs

at the same site, up to 250 m for Site #1. As the average flux calculation

can be sensitive to the exact location used, especially at small box sizes, the

particular location of each individual IOP was used as the center of areal

averaging. The proportions reported in Experiment 3a are averages from

between IOPs of each respective site, which only vary by 1 % to 2 %, and can

be thought of being representative of the site when at the 1 km box size or

larger.



Chapter 7. Experiment 3: Areal Averaging Effects 88

Figure 7.11: (Left) Land use proportions for IOP10 (Site #1).

(Right) The same for IOP05 (Site #2).

Figure 7.11 shows how land use proportions change at the finer reso-

lution for IOPs 10 & 05, corresponding to Sites #1 and #2, respectively.

In addition to capturing the general features presented in Experiment 3a

(Figures 7.6 & 7.9), this finer resolution allows one to study these changes in

detail. Both IOPs (sites) display considerable variations in proportions at do-

main sizes smaller than 5 km, however rates of change are more pronounced

for IOP05 (Site #2). The rapidly changing land use proportions directly

impact the calculation of areal averaged surface heat fluxes, as shown in Fig-

ure 7.12a. Correspondingly, modelled BL heights react accordingly to those

variations in fluxes, via the buoyancy flux (recall Equations 5.4 & 5.5). Fig-

ure 7.12b illustrates the effects on BL height evolution for IOP05, for all 40

model runs of Experiment 3b.

Though colours of the runs range from dark blue to dark red, the major-

ity of variation occurs in the blue range, representing smaller domain sizes.

However in Figure 7.12b, it appears as though domain sizes beyond 2 km are
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(a) Surface heat fluxes of IOP05 (b) BL height estimates of IOP05

Figure 7.12: (a) Surface heat fluxes of IOP05, and (b) CLASS

outputs of IOP05 for Experiment 3b. Curve colours correspond

to the matching domain sidelength on the colourbar.

overlaying on top of each other. Figure 7.13 provides an alternative visuali-

sation, and better emphasises the differences between model runs. Coloured

contours indicate the linearly interpolated difference between CLASS model

BL height estimates and observed values, divided by the observed value at

that time, referred to as the “relative difference” (Equation 7.2).

relative difference =
zi,CLASS − zi,OBS

zi,OBS
(7.2)

Red areas indicate CLASS overestimation, while blue areas are underestima-

tion. The dashed contours indicate the ratio between domain sidelength and

observed BL height at that time, providing a spatial aspect ratio, relating the

horizontal extent of the domain size to the vertical depth of the BL. Finally,

the solid line marks the time when the SH flux became zero in the CLASS

simulations.

This visualisation can be related back to Figure 7.12b. Representing the
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smallest domain sizes, the dark blue curves in Figure 7.12b are reflected in the

steep gradient at the bottom of Figure 7.13, whereby small changes in domain

size result in large changes of relative difference (i.e. BL height). These

contours, mostly horizontal at small domain sizes in Figure 7.13, gradually

begin to turn towards vertical at larger domain sizes. This begins around

the 2 km domain, but is fully established by the 4 km mark. This better

shows what was implied, but obscured by subsequent runs in Figure 7.12b;

Figure 7.13: IOP05: (Coloured contours) Difference between

modelled BL height and observations, divided by observed BL

height. The zero contour is emphasised in bold. (Dashed con-

tours) Ratio of domain sidelength to observed BL height. The

solid vertical line indicates the time when SH approaches zero. ×
denote observed BL height (in km) and SUMO profile times.
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namely, that relative differences develop independence from domain size at

larger domain sizes. To see this domain size independence developing, one

can take the derivative of the relative difference with respect to domain size

(Figure 7.14). Rates of change peak between 1 km to 1.5 km, with small local

maxima thereafter, before eventually settling near zero at 4.5 km. Similar

patterns develop for the other IOPs, though IOPs launched from Site #1

have a second peak at 3 km, but also then approximate zero around 4.5 km

or 5 km.

This distance can be thought of as a “MLM blending length-scale”, spe-

cific to the BLLAST campaign area, where extents and flux characteristics

of heterogeneities are sufficiently mixed so as to approximate a homogeneous

surface. This is not to say that land use proportions remain steady across

all domain sizes, as can be seen in Figure 7.11 (right), with grass and moor

proportions continuously exchanging with one another all the way up to the

maximum domain size. Rather, the surfaces involved change proportions

while maintaining similar flux evolutions (Figure 7.12a), which in this case

is due to grass and moor having very similar SH and LE (Figure 7.5).

Figure 7.14: Rate of change of relative difference for IOP05
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Figure 7.13 also showcases an interesting relationship between aspect ratio

and the zero contour of relative difference. This contour remains between the

2:1 and 4:1 aspect ratio isolines for most of the simulation, only exceeding

this threshold and turning to domain independence approximately an hour

before the SH flux reaches zero. This contour can be interpreted as the

evolution of the optimal domain sidelength, or the conceptual size of domain

“felt” by the BL height. As contour lines are interpolations based on BL

height differences between CLASS and observations, when the zero contour

intersects the time of a SUMO profile, an optimal domain sidelength can

be associated with the profile. Though IOP05 possesses the best and most

examples of this intersection, three other IOPs present with at least one

occurrence (Figure 7.15). However, examination of the direct relationship

between BL height and optimal domain sidelength (left) reveals little in the

way of a definitive trend across all occurrences. This is especially true for

IOPs 05 & 06, two consecutive days with highly different trends.

Figure 7.15: (left) zi versus optimal domain size, (right) zi multi-

plied by ML wind speed (〈M〉) versus optimal domain size muliti-

plied by the convective velocity scale (w∗). Marker colours denote

time of the day.
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Similarly to the flux footprint method, dependence on wind speed (but

not direction) was introduced into further analysis via the convective dis-

tance, XML (Equation 7.3) (Stull 1988, p.484).

XML =
Domain ∗ w∗

zi〈M〉
w∗ =

( gzi
〈θv〉

(w′θ′v)s

) 1
3

(7.3)

where 〈M〉 is the ML wind speed, and w∗ is the convective velocity scale,

which was found via interpolation of (w′θ′v)s between fine resolution grid

points. Figure 7.15 (right) shows the relationship between the numerator and

denominator of XML. Though no overall pattern emerges, a more favourable

trend has developed for IOP05, indicating that inclusion of 3D motion (wind

speed and convection) acted to better organise the data. And while such a

result is encouraging, even with a more substantial trend amongst all IOPs,

a direct expression for optimal domain size would still be unattainable in

practical application, as (w′θ′v)s, and therefore w∗, is a function of domain

size.

7.3 Summary

Despite changing land use proportions in the areas surrounding Sites #1 & #2

combining with changes in ground and atmospheric conditions, surface het-

erogeneities achieve a “MLM blending length-scale” by 5 km during the

BLLAST campaign. Beyond this size, areal averages of surface heat fluxes

from the heterogeneities level out and show little variation up to 10 km. Al-

though, flux magnitudes at these sizes act to overestimate BL heights for

most days studied, with the best results occurring for smaller domain sizes.

While the outcomes presented for the “optimal domain size” focus on

IOP05, this day is not typical for the IOPs studied, and represent one of the

best cases of this Experiment. Overall, the “optimal domain size” appears

in only four of the ten days studied, IOPs 05, 06, 10, & 11. The BL heights
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are entirely overestimated for the other six days, seeming to imply that the

optimal side length be an area smaller than 250 m. Given that many of

these other six days have BL heights higher than 800 m, the implication that

such a small area of land, with approximately a 1:3 horizontal-to-vertical

ratio, would serve as the foundation of a developing BL seems unlikely. As

well, four of those six (IOPs 02, 04, 07, & 08) do not have any large-scale

forcings included. Additionally, the IOP03 BL is uplifted far above obser-

vations, while IOP09 has significantly underestimated ML mean potential

temperature approximations, both of which draw the legitimacy of large-

scale forcings into question. The same statements can be applied to IOPs 11

& 10, respectively, as even though each display some form of optimal size, oc-

currences are limited. And of the two remaining days with multiple instances

of optimal size, IOPs 05 & 06, only IOP06 shows sensitivity with respect to

initialisation. This leaves IOP05 as the sole non-divergent example, where

introduction of large-scale forcings does not create anti-correlations of 〈θ〉,
nor induce uplifting which contradicts observations.

With such a modest sample size, definitive evidence of the optimal domain

size concept can not be acquired. It is possible that this absence of evidence

will eventually prove to be contributory evidence of absence, and the results

of IOP05 are coincidental. Nevertheless, this can only be achieved with

further research.



8 Conclusions & Outlook

This study utilized multiple datasets from the BLLAST campaign, and the

CLASS model, to identify the effects of large-scale atmospheric and surface

forcings on the development of the BL. To facilitate the extraction of BL

properties from SUMO flights and the subsequent generation of ML profiles,

a specially designed, and mostly autonomous, program was created. Once

generated, the program passes initialisation profiles to CLASS, as well as

time-dependent large-scale forcings, if so configured. In this way, a consistent

methodology was applied to the analysis of almost all of the BLLAST IOPs,

a previously unexplored line of research. This study draws from the past

experience of Blay-Carreras et al. (2014) and Pietersen et al. (2015). While

these works focused on an in-depth analysis and investigation of individual

IOPs, this study has aimed to provide fundamental information regarding

large-scale forcings for nearly all of the IOPs, in order to expedite further

research. This has been accomplished through the categorization of IOPs

into groups, depending on the influence of the underlying large-scale forc-

ings. This categorization is extended by an analysis of the sensitivity of the

corresponding CLASS simulations on the initialisation profiles (Table 8.1).

After investigating and describing the role played by large-scale forcings,

and determining the sensitivity on the time of initialisation, the effects of

surface heterogeneity were subject to deeper analysis. This was done via the

introduction of areal averaging of surface heat fluxes, consolidating fluxes of

95
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Table 8.1: Summary of large-scale forcing influence and sensitiv-

ity for each IOP. IOPs marked with “*” indicate those days for

which MesoNH data was unavailable. Influences for these IOPs

are then compared to observations, whereas other days compare

“A-Off/S-Off” runs with “A-Vary/S-Vary”. IOPs marked with

“†” exhibited uplifting from MesoNH.

IOP Calendar Influence of Large-scale forcings Sensitivity to

Date Date zi 〈θ〉 〈q〉 Initial Conditions

IOP02 19-Jun Significant* Noticeable* Noticeable* -

IOP03 20-Jun Very Significant† Noticeable Significant Convergent

IOP04 24-Jun Noticeable* Limited* Limited* -

IOP05 25-Jun Significant Noticeable Significant Paralleling

IOP06 26-Jun Significant Noticeable Significant Divergent

IOP07 27-Jun Significant* Significant* Significant* -

IOP08 30-Jun Limited* Limited* Limited* -

IOP09 01-Jul Limited Significant Limited Paralleling

IOP10 02-Jul Noticeable Significant Noticeable Paralleling

IOP11 05-Jul Very Significant† Significant Significant Paralleling

all incorporated land types into a single flux evolution that was representa-

tive of the area and day. Through this novel method, a “MLM horizontal

blending length-scale” of around 5 km was discovered for all IOPs, suggesting

that surface heat flux averages over areas larger than this produce similar

MLM results as those at 5 km. This can have implications for future mod-

elling efforts, providing potential validation for smaller domains at higher

resolutions.

While the outcomes of this study are intriguing, it has not been without

challenges. Even a simple concept such as determination of BL height elicits

a multitude of criteria, each possibly giving different results. Visual estimates

underwent multiple revisions for some IOPs, sometimes invoking non-trivial
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differences. For IOPs with BL heights upwards of 1200 m, a 20 m (one height

interval of SUMO profile) change to BL height could substantially change

FA lapse rates, as SUMO profiles only reached 1600 m, leaving 400 m or less

for calculating linear trends. Additionally, ML profiles passed to CLASS

require a specific BL height, with no room for ambiguity. In the absence of

a well-defined capping inversion, the exact determination of BL height was

open to some subjectivity, and its precise placement would modify both lapse

rate calculations and inversion strengths. Ultimately, the chosen BL height

estimates were attempts at balancing automatic criteria, and visual cues; a

fusion between science and skill.

Further research would be best served by the implementation of a ro-

bust, perhaps as-of-yet undiscovered BL height criteria, or the combination

of multiple existing criteria, similar to the “BLHavg” used in this study. Such

research could also expand upon the results of this study, through the use

of a circular area average of surface heat fluxes, rather than a simple square

shape, thereby including only those surfaces equidistant to the profile site

in the areal average calculation. The use of a square box size was deemed

suitable in this study, as its use was moreso a proof of concept. And though

the assumption of MesoNH large-scale forcings matching reality is a keystone

of this thesis, it may not be the case for all IOPs. It may be that MesoNH is

adept at recreating circumstances occurring during some IOPs, while failing

to represent all processes occurring during others. Researching what these

processes might be, could reveal a great deal about some of the complex

interactions going on in the development of the BL.

Overall, the initial results from IOPs 05 & 06 demonstrate that their evo-

lutions are well represented by MLM governing equations upon incorpora-

tion of MesoNH large-scale forcings and Hartogensis (2015b) surface heat flux

maps. And it is through the use of time-dependent large-scale forcings that

BL development for these two days is better recreated, though special treat-
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ment should be given to IOP06 as it displayed sensitivity to initialisation. As

well, despite not having large-scale forcing data, IOP08 development is also

well represented under an advection and subsidence free regime. Therefore,

while all IOPs in the BLLAST dataset are ripe for continued study, with

the availability of the current MesoNH dataset it is believed that these three

days are prime candidates for further MLM research.
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Appendix A:

CLASS Modification details

Working with the FORTRAN research version of CLASS, two logical inputs

were introduced into the NAMOPTIONS initialization file (see Appendix B):

lvarying_wsls and lvarying_adv. When set to true, these switches cre-

ate a 1D array of length equal to time divided by dtime. In the FORTRAN

environment, this is known as the runtime, which represents the number

of timesteps executed by CLASS. After allocation, CLASS then reads an

external file, generated at the same time as NAMOPTIONS, with runtime

number of entries (see Section 4.1.4 for information regarding file genera-

tion). Finally, during the main do loop in CLASS, if the logic switch is set

to true, then the constant value listed in NAMDYN is rewritten to the ap-

propriate time varying value of the 1D array. The example code block below

corresponds to time-dependent subsidence, but the same principles apply to

potential temperature and specific humidity advections, as well as for time

varying incoming solar radiation in the NAMRAD field of NAMOPTIONS.

real, dimension(:), allocatable :: wsls_changing
...

! option for the dynamics
namelist/NAMDYN/ &
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lvarying_wsls, &
wsls, &
...

! Time-dependent subsidence
if (lvarying_wsls) then

allocate ( wsls_changing(runtime) )
open(2,file = ’subsidence’)
read(2,*) wsls_changing
close(2)
write (*,*) ’wsls is varying in time’

endif
...

do t=1, runtime
...

if (lvarying_wsls) then
wsls = wsls_changing(t)

endif

! subsidence velocity (large-scale advection)
ws=-wsls*zi(1)



Appendix B:

CLASS NAMOPTIONS example

&NAMRUN
!ML_props generated at: 18-Mar-2017 22:59:13
outdir = ’IOP06-1207_A-vary_S-vary_MESONH_10km’
time = 28260
dtime = 1
atime = 60
atime_vert = 1800
h_max = 4000
latt = 43.0839
long = 0.35854
day = 177
hour = 12.1167
/

&NAMDYN
zi0 = 470
beta = 0.2
lenhancedentrainment = .true.
lvarying_wsls = .true.
wsls = 5.2e-05
lfixedlapserates = .false.
c_fluxes = .false.
pressure = 950
wthetasmax = 0.1765
thetam0 = 309.6
dtheta0 = 0.5
gamma = 2.3e-03
lvarying_adv = .true.
advtheta = -2.9e-04
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wqsmax = 0.1346
qm0 = 9.5
dq0 = -2.8
gammaq = 1.6e-04
advq = 3.7e-04
lencroachment = .false.
!ladvecFT = .false.
c_ustr = .false.
z0 = 0.433
uws0 = 0.1284
vws0 = -0.0172
um0 = -4.2
vm0 = 0.6
ug = -2.5
vg = -0.7
gammau = 6.7e-03
gammav = -7.4e-04
!lscu = .false.
!lrelaxdz = .false.
!tau = 0
/

&NAMFLUX
offset_wt = 0
offset_wq = 0
function_wt = 2
function_wq = 2
starttime_wt = -17188
endtime_wt = 16496
starttime_wq = -22128
endtime_wq = 22823
/

&NAMSURFLAYER
lsurfacelayer = .true.
z0m = 0.433
z0h = 0.433
/

&NAMRAD
lradiation = .true.
!cc = 0.0
lvarySwin = .true.
S0 = 1376
albedo = 0.2
/

&NAMSURFACE
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llandsurface = .false.
/



Appendix C:

Experiment 1: Advection & Subsidence In-

fluence - ML means

Figure C.1: Jump to: IOP02
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Figure C.2: Jump to: IOP03, IOP04, IOP05
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Figure C.3: Jump to: IOP06, IOP07, IOP08
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Figure C.4: Jump to: IOP09, IOP10, IOP11



Appendix D:

Experiment 1: Advection & Subsidence In-

fluence - Statistical Metrics

Table D.1: Statistical metrics for Experiment 1: IOP02. Jump

to: IOP02

A-Off/S-Off

RMSE ME CORR [-]

zi [m] 933 827 -0.468

〈θ〉 [K] 2.86 2.28 0.907

〈q〉 [g/kg] 1.94 -1.67 -0.676
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Table D.2: Statistical metrics for Experiment 1: IOP03. Jump

to: IOP03

RMSE ME CORR [-] RMSE ME CORR [-]

A-Off/S-Off A-Vary/S-Off

zi [m] 538 514 0.258 415 391 0.286

〈θ〉 [K] 2.56 2.48 0.810 1.15 1.06 0.849

〈q〉 [g/kg] 0.51 0.51 -0.423 2.35 2.33 -0.898

A-Off/S-Vary A-Vary/S-Vary

zi [m] 1264 1146 -0.072 1090 977 -0.0.82

〈θ〉 [K] 2.47 2.41 0.836 1.06 0.99 0.882

〈q〉 [g/kg] 0.56 0.55 -0.822 2.40 2.37 -0.896

Table D.3: Statistical metrics for Experiment 1: IOP04. Jump

to: IOP04

A-Off/S-Off

RMSE ME CORR [-]

zi [m] 351 336 -0.881

〈θ〉 [K] 1.10 0.90 0.891

〈q〉 [g/kg] 0.27 -0.18 0.297
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Table D.4: Statistical metrics for Experiment 1: IOP05. Jump

to: IOP05

RMSE ME CORR [-] RMSE ME CORR [-]

A-Off/S-Off A-Vary/S-Off

zi [m] 696 666 0.174 498 475 0.182

〈θ〉 [K] 3.07 2.94 0.923 1.25 -0.80 0.726

〈q〉 [g/kg] 1.23 -1.20 0.732 2.67 2.40 0.896

A-Off/S-Vary A-Vary/S-Vary

zi [m] 120 69 0.733 85 -6 0.693

〈θ〉 [K] 5.13 4.87 0.900 1.59 1.43 0.977

〈q〉 [g/kg] 0.79 -0.71 0.795 2.83 2.50 0.896

Table D.5: Statistical metrics for Experiment 1: IOP06. Jump

to: IOP06

RMSE ME CORR [-] RMSE ME CORR [-]

A-Off/S-Off A-Vary/S-Off

zi [m] 1231 1129 -0.462 975 891 -0.396

〈θ〉 [K] 2.51 2.21 -0.498 0.81 0.13 0.822

〈q〉 [g/kg] 0.74 -0.33 0.834 5.26 4.52 0.821

A-Off/S-Vary A-Vary/S-Vary

zi [m] 510 487 0.664 364 343 0.788

〈θ〉 [K] 3.08 2.64 -0.698 0.85 0.65 0.743

〈q〉 [g/kg] 0.73 -0.28 0.787 4.43 4.00 0.863
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Table D.6: Statistical metrics for Experiment 1: IOP07. Jump

to: IOP07

A-Off/S-Off

RMSE ME CORR [-]

zi [m] 1355 1116 -0.553

〈θ〉 [K] 4.21 3.50 -0.683

〈q〉 [g/kg] 4.90 -4.61 -0.846

Table D.7: Statistical metrics for Experiment 1: IOP08. Jump

to: IOP08

A-Off/S-Off

RMSE ME CORR [-]

zi [m] 213 139 -0.380

〈θ〉 [K] 0.75 -0.64 0.945

〈q〉 [g/kg] 0.20 0.02 0.863

Table D.8: Statistical metrics for Experiment 1: IOP09. Jump

to: IOP09

RMSE ME CORR [-] RMSE ME CORR [-]

A-Off/S-Off A-Vary/S-Off

zi [m] 410 401 0.491 275 267 0.528

〈θ〉 [K] 1.44 1.32 0.928 3.18 -3.16 -0.934

〈q〉 [g/kg] 0.36 0.15 0.460 0.37 0.20 0.499

A-Off/S-Vary A-Vary/S-Vary

zi [m] 400 390 0.578 267 258 0.620

〈θ〉 [K] 1.49 1.38 0.932 3.12 -3.10 -0.921

〈q〉 [g/kg] 0.36 0.15 0.467 0.37 0.20 0.514
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Table D.9: Statistical metrics for Experiment 1: IOP10. Jump

to: IOP10

RMSE ME CORR [-] RMSE ME CORR [-]

A-Off/S-Off A-Vary/S-Off

zi [m] 580 471 0.055 249 190 0.154

〈θ〉 [K] 1.18 0.91 0.981 4.16 -3.81 -0.891

〈q〉 [g/kg] 0.67 -0.63 -0.559 0.88 0.84 0.851

A-Off/S-Vary A-Vary/S-Vary

zi [m] 636 474 0.012 290 182 0.055

〈θ〉 [K] 1.47 1.19 0.984 3.81 -3.50 -0.688

〈q〉 [g/kg] 0.69 -0.64 -0.536 0.87 0.84 0.863

Table D.10: Statistical metrics for Experiment 1: IOP11. Jump

to: IOP11

RMSE ME CORR [-] RMSE ME CORR [-]

A-Off/S-Off A-Vary/S-Off

zi [m] 489 406 0.978 225 142 0.953

〈θ〉 [K] 1.55 1.22 0.981 1.06 -0.80 0.935

〈q〉 [g/kg] 2.21 -1.84 -0.957 0.90 0.12 -0.670

A-Off/S-Vary A-Vary/S-Vary

zi [m] 1802 1408 0.943 1058 791 0.934

〈θ〉 [K] 0.54 0.41 0.994 1.91 -1.87 0.976

〈q〉 [g/kg] 1.77 -1.48 -0.943 0.86 0.77 0.266
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Experiment 2: Sensitivity to Initial Condi-

tions - ML means

Figure E.1: Jump to: IOP03
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Figure E.2: Jump to: IOP05, IOP06, IOP09
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Figure E.3: Jump to: IOP10, IOP11
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Experiment 3a: Coarse Areal Averaging Ef-

fects - ML means

Figure F.1: Jump to: Site #1: IOPs 02-04 & 08-11
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Figure F.2: Jump to: Site #1: IOPs 02-04 & 08-11
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Figure F.3: Jump to: Site #1: IOPs 02-04 & 08-11
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Figure F.4: Jump to: Site #2: IOPs 05-07
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