Weaknesses of forecast model that could be addressed with BLLAST datasets

E. Bazile, F. Couvreux, and Y. Seity (CNRM/GAME)

Outline

- Overview of the NWP at Meteo-France
- Specific output for BLLAST
 - spatial variability
 - how to compare with observations ?
 - Advection for a 1D case ?
- Focus on TKE and weaknesses in the turbulence in stable condition and evening transition ?
- Conclusions and perspectives

Operational Weather forecasting at Météo-France July 2011 (BLLAST experiment)

Specific experiment (almost in real time) with AROME

AROME

PHYSICS in ARPEGE/ALADIN/AROME

	ARPEGE/ALADIN	AROME (NH)
	Global model (10km to 55km) and LAM (7.5km)	2.5km
Surface	ISBA	SURFEX
	(Noilhan, Planton (89), Giard Bazile (2000))	With ISBA, TEB, Ecume, etc
Turbulence	TKE (Cuxart et al 2000)	
Mixing length	Bougeault Lacarrere (89)	
	Modified by the shallow cloud thickness and deep convection	
Shallow Convection	KFB (Bechtold et al 2001)	PMMC09 (Pergaud et al 2009)
Deep Convection	Moisture Convergence (Bougeault 85)	Explicitly resolved
Clouds (PDF)	Smith (90)	Bougeault (82)
GWD	Described in annexe of Catry et al. 2008	no
Microphysics	Ql,Qi,Qr,Qs Lopez(2002) Bouteloup et al (2005)	Ql,Qi,Qr,Qs,Qg Pinty and Jabouille 1998
Radiation	RRTM for LW (Mlawer et al. 1997) and Morcrette et al. 2001 for SW (6b)	

2M Temperature, Sensible heat flux

Sensible and latent heat flux 20110701

models than observed especially for AROME

BLLAST Workshop Bergen 14-16 August 2013

SuperSite1_Valimev30m SuperSite1_Valimev45m SuperSite1_Valimev60m

SuperSite2 Forest30m

F. Couvreux (BLLAST

workshop 2012)

SuperSite2 Corn

SuperSite2 Moor

T-T18h Transition 20110701

-ARPEGE larger & quicker decrease in the afternoon than AROME - In observations, different behaviours among the stations, more variability BLLAST Workshop Bergen 14-16 August 2013

Problem of advection and fine scale structure : Qv vertical profile (20110701)

14-16 August 2013

Problem of advection and fine scale structure : Qv vertical profile (20110701)

Turbulence and shallow convection in ARPEGE/AROME

EDMF concept : Siebesma and Teixeira, (2000) and Hourdin et al., (2002) and Soares et al., 2004

Turbulent Kinetic Energy (m2/s2) 20110701

-In ARPEGE/AROME, after 18TU, the TKE is very small (<0.1) \rightarrow no vertical mixing

-The decrease of TKE is too fast? If yes why? Dissipation length?

TKE profile 20110701 +12UTC

TKE profile 20110701 +16UTC

-Significant differences between ARPEGE and AROME in terms of value of TKE but also in the vertical structure, although the TKE scheme is the same ! Impact of the horizontal resolution with NH, fine scale effect ? But where is the truth ?

TKE profile 20110701 +18UTC

TKE profile 20110701 +20UTC

TKE profile 20110701 +20UTC

TKE is almost zero, excepted for the first levels in AROME due to a "arbitrary" minimum wind shear at the surface. BLLAST observations can probably help us !!!

Turbulent Kinetic Budget 20110701 ARPEGE (pt3)

Some weaknesses ...

- warm bias \rightarrow interaction with the surface and the snow scheme
- Mixing length and TKE close to zero in very stable conditions \rightarrow no mixing
- Following Galperin et al 2007 and Zilitinkevich et al 2008 turbulence survives for Ri>>1. Is it the case with the TKE scheme ?

Some weaknesses ...

 With the 1D case (GABLS1 and GABLS3) and the 1D Model MUSC with the AROME and ARPEGE physics, we can verify the dependency of the Pr number vs Ri

TKE at Dome C Antarctica 11/12 Dec2009

TKE is underestimated at DomeC during night, although the surface temperature is well forecasted, the increase of vertical resolution does not improved the TKE and the vertical profile

TPE : Turbulent Potential Energy

$$E_{p} = \frac{1}{2} \left(\frac{\beta}{\frac{\partial \theta}{\partial z}} \right) \cdot \theta^{2}$$

$$\frac{\partial E_{P}}{\partial t} = advec - \beta(\overline{w'\theta'}) - \frac{1}{\rho} \cdot \frac{\partial \rho w' E_{P}}{\partial z} - c_{P} \cdot \frac{E_{P}^{3/2}}{l}$$
$$\frac{\partial e_{T}}{\partial t} = advec + P_{d} + \beta(\overline{w'\theta'}) - \frac{1}{\rho} \cdot \frac{\partial \overline{\rho w' e_{T}}}{\partial z} - c_{\varepsilon} \cdot \frac{\overline{e_{T}^{3/2}}}{l}$$

The buoyancy flux appears with opposite signs and describes nothing but the energy exchange between TKE and TPE. For stable conditions and during transition in late afternoon the Buoyancy flux becomes negative and can be considered as an ultimate killer of turbulence (Zilitinkevitch et al, 2013)

Fig. 3 The shares of the turbulent kinetic energy $E_{\rm K}$: longitudinal $A_x = E_x/E_{\rm K}$ (along the mean wind, red circles), transverse $A_y = E_y/E_{\rm K}$ (green squares) and vertical $A_z = E_z/E_{\rm K}$ (black triangles), after the Kalmykia-2007 field campaign of the A.M. Obukhov Institute of Atmospheric Physics of the Russian Academy of Sciences (courtesy of Rostislav Kouznetsov). The lines show our inter-component energy exchange model, Eq. 50, with $C_0 = 0.125$, $C_1 = 0.5$ and $C_2 = 0.72$, converted into z/L dependences with the aid of Eq. 71

Partial EFB Closure in ARPEGE :

- new prognostic variable for Ep
- new computation for Km/Kh (anisotropy effect via Ez)

$$K_{M} = \alpha_{M} \cdot l \cdot \sqrt{\overline{e_{T}}} \longrightarrow K_{M} = 2 \cdot C_{\tau} \cdot E_{z} \cdot \frac{l}{\sqrt{\overline{e_{T}}}}$$
$$K_{\theta/q} = \alpha_{\theta} \cdot K_{M} \cdot \phi_{3} \longrightarrow K_{\theta/q} = 2 \cdot C_{F} \cdot E_{z} \cdot \frac{l}{\sqrt{\overline{e_{T}}}} \cdot (1 - C_{\theta} \frac{E_{P}}{E_{z}})$$

Very preliminary results with the Partial EFB Closure in ARPEGE for GABLS1 but positive

GABLS1 MUSC cy38t1

Conclusions & Perspectives

- TKE in AROME/ARPEGE is probably underestimated in stable conditions and during the sunset → not enough mixing
- BLLAST datasets can be very useful especially for TKE comparison in parallel with DomeC observations
- Compute advection from AROME (fine scale effect) for a 1D possible experiment
- Evaluate the impact of the EFB Closure in a 1D BLLAST case ?

