

Vertical and temporal evolution of turbulence spectra in the late afternoon transition

Clara Darbieu, Fabienne Lohou, Marie Lothon, David Pino, Jordi Vilà and BLLASTers

Research strategy

Improve our understanding of the vertical structure of the BL during the afternoon transition

Is there a decoupling between surface and higher levels during LAT?

• **Spectral analysis** at different heights (aircraft, surface measurements, LES)

→ Evolution of the characteristic
 length scales of w
 → Evolution of the shape of the
 turbulence spectra

Until now :

Shape of the spectra

-Many models for convective conditions

:

Kaimal et al. (1976) (validated in surface: Kansas, Minnesota experiments), von Kàrmàn (1948)

- Analytical spectra models not always adapted within the entire CBL (Lothon et al. (2009))

Kristensen et al. (1989) general kinematic spectral model

Until now :

Shape of the spectra

-Many models for convective conditions

Kaimal et al. (1976) (validated in surface: Kansas, Minnesota experiments), von Kàrmàn (1948)

- Analytical spectra models not always adapted within the entire CBL (Lothon et al. (2009))

→ Kristensen et al. analytical model (shape parameter)

-Few studies on its temporal evolution

Hypothesis : Anisotropic horizontally homogeneous vertical velocity field

$$\frac{S(k)}{\sigma_w^2} = \frac{1}{2\pi} \frac{1 + \frac{8}{3} \left(\frac{l_w k}{a(\mu)}\right)^2 \mu}{\left(1 + \left(\frac{l_w k}{a(\mu)}\right)^{2\mu}\right)^{\frac{5}{6\mu} + 1}}$$
$$a(\mu) = \pi \frac{\mu \Gamma\left(\frac{5}{6\mu}\right)}{\Gamma\left(\frac{1}{2\mu}\right) \Gamma\left(\frac{1}{3\mu}\right)}$$

$$\lambda_w = \left\{ \frac{5}{3} \sqrt{\mu^2 + \frac{6}{5}\mu + 1} - \left(\frac{5}{3}\mu + 1\right) \right\}^{1/(2\mu)} \frac{2\pi}{a(\mu)} l_w$$

Two characteristics : I_w (integral scale) µ (shape)

S(k)

Kristensen et al. (1989) general kinematic spectral model

Until now :

Shape of the spectra

-Many models for convective conditions

Kaimal et al. (1976) (validated in surface: Kansas, Minnesota experiments), von Kàrmàn (1948)

Analytical spectra models not always adapted within the entire CBL (Lothon et al. (2009))

 \rightarrow Kristensen et al. analytical model (shape parameter)

-Few studies on its temporal evolution

Hypothesis : Anisotropic horizontally homogeneous vertical velocity field

Until now :

Lengthscales

Many ways to define those scales
→ wavelength of the energy
spectrum peak (energy production):
Nieuwstadt and Brost (1986)
Grant (1997)
→ integral scale (energycontaining eddies): Sorbjan (1996)
→ weighted integral of the
spectrum : Pino et al. (2006)
→ etc...
Lack of agreement in the
evolution of those scales during LAT

Until now :

Lengthscales

-Many ways to define those scales
→ wavelength of the energy
spectrum peak (energy production) :

Nieuwstadt and Brost (1986)
Grant (1997)
→ integral scale (energy

containing eddies): Sorbjan (1996)
→ weighted integral of the
spectrum : Pino et al. (2006)
→ etc...

Lack of agreement in the

evolution of those scales during LAT

What is our contribution?

 Spectral analysis during the LAT (BLLAST + LES) using Kristensen et al. analytical spectra model

1/ Evolution of the characteristic length scales of w (2 methods) during the LAT

2/ Evolution of the shape of the turbulence spectra

Working assumptions and methods

1) Case study : 20 June 2011

2) Use of an analytical spectra model for convective BL as a reference (Kristensen et al., 1989)

- Calculation of the turbulence spectra (with LES and BLLAST data) every 30min : compromise between sufficient number of eddies and stationnary conditions
- Search of (μ, I_w) which gives the best fit
- 3) Calculation of the integral length scales from 2 methods :

(2) from the analytical spectra model (lw)

Data used to calculate the spectra

- BLLAST data : Various surfaces, 60m mast, aircrafts
- LES

Piper Aztec and Sky Arrow on 20 June

2 flights for each in the afternoon Three // legs, 6 heights, 3 latitudes

- Aircrafts: dense observations of the turbulence decay within the ML
- Measurements over various surfaces

Validation of results found in litterature for vertical profiles of lengthscales at 12h

Vertical profiles of w lengthscales from BLLAST data (points), and LES (continuous lines) evolving with time (color changing from black to red)

→ At 12h, same lengthscales than Dosio et al : lw ~ 0.25 zi

Dosio et al. (2005)

Temporal evolution of w integral length scales from the 2 methods at different heights. With LES

Temporal evolution of I_w from the fit with aircrafts and LES APACT

Temporal evolution of w integral length scales from the 2 methods. Surface and 60m mast

Decoupling between surface layer and the layer above

- LES could fill the gap between surface and aircraft measurements
- How low can we estimate I_w with LES according the resolution ?

Evolution of the shape of the spectra

Conclusions:

Perspectives:

- Evolution of the slopes ?
- Evolution of the contribution of the different frequency domains ?
- Extend the study to other variables (T, u, v)

Thank you for your attention !

Temporal evolution of w integral length scales at different levels, from observations (surface, 60m, aircrafts) and LES

Spectral analysis

Three domains defined

Limits are μ -depending in case of observations, fixed when applied to shorter LES-range.

- 1. The low wavenumber range
- 2. Around the peak of the maximum of the spectra
- 3. The inertial subrange

Contribution (%) of the 3 frequency domains

10⁻¹

k

Contribution (%) of the 3 frequency domains

II] How do the turbulent spectra evolve during the LAT?• Results

LES for 20 June(o) + Obs of the 2 planes(+)

Evolution of the slopes in low wave numbers

Evolution of the slopes in the inertial subrange

10

10

10

10-2

cS(k)/var LES + SP |

II] How do the turbulent spectra evolve during the LAT?• Results

Departure from the analytical model

Integral over k of the difference between the fit and the LES spectra in the three domains

Departure from the analytical model

• Integral over k of the difference between the fit and the LES spectra in the three domains

- Integral over k of the squared difference between the fit and the LES spectra
- Integral over k of the difference between log(fit) and log(LES) spectra
- Integral over k of the squared difference between log(fit) and log(LES) spectra

Ongoing work ...