

Pascal Flament, Karine Deboudt, Patrick Augustin & Hervé Delbarre ULCO-LPCA, Dunkerque, France Marie Lothon, Laboratoire d'Aérologie, Toulouse, France

Background and Topics

-Sulfates in submicronic aerosols are formed from the (photo) oxidation of SO_2 and other sulfur-containing compounds, such as DMS (dimethyl sulfide).

- After nucleation and growing, sulfates (SO₄²⁻)are found in the "hundreds nanometers" size range.

-Our aim here is to differentiate locally generated SO_4^{2-} (by nucleation/growing), from SO_4^{2-} advected from distant sources.

-For that, SO₄²⁻ concentrations are compared to aerosol size sorting, performed by differential electrical mobility measurement (SMPS).

Material and Methods

-Aerosols were collected by cascade impaction for chemical analyses and sorted into three size ranges:

The coarse fraction (> 2 μm in diameter)
The "accumulation" mode (100 nm – 2 μm)
The "ultrafine particles" mode (< 100 nm)

-A Scanning Mobility Particle Sizer (SMPS – *Grimm*® *GmbH*) provided the Number Size Distributions

- AL

-Sulfates were analyzed in the "accumulation mode" by Ionic Chromatography (DIONEX® ICS 90): -Detection Limit: 57 ng/m³ -Accuracy: 98% -Reproducibility: <5%

1st and 2nd of July: Sulfates formation seems to be related to local nucleation/growing processes

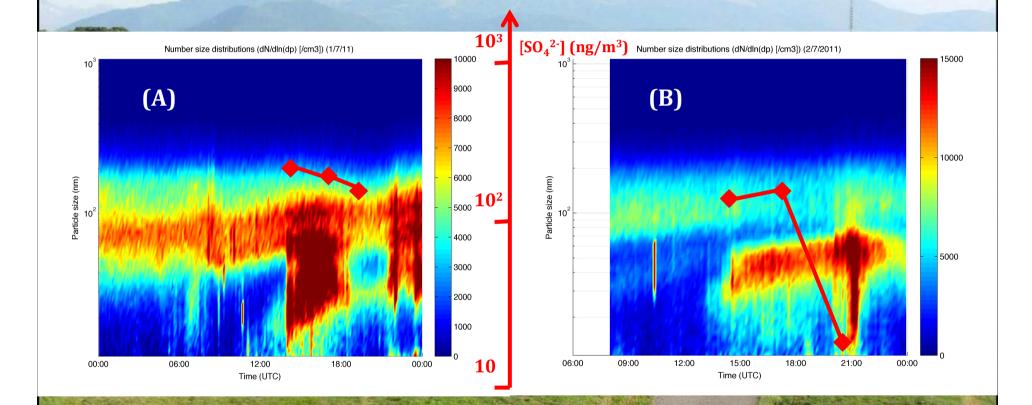


Chart of the aerosol number size distributions and SO₄²⁻ concentrations (red diamonds) vs. time (UTC), measured the 1st (A)and 2nd (B) July 2011 on "Super Site 1" during the BLLAST Field Campaign

 6^{th} and 7^{th} of July: Sulfate concentrations are > 1 µg/m³ and seems not to be related to local nucleation/growing processes ... Are regional transport episodes the cause of these important SO_4^{2-} concentrations? **10**⁴ $[SO_4^{2}] (ng/m^3)$ Number size distributions (dN/dln(dp) [/cm3]) (6/7/11 10000 10000 103 **(B) (A)** 9000 9000 8000 8000 7000 7000

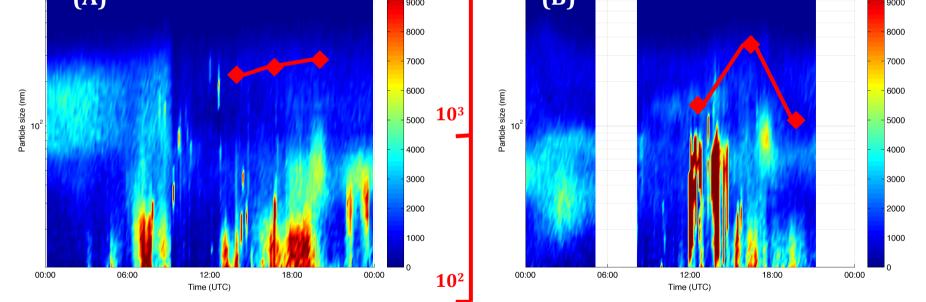


Chart of the aerosol number size distributions and SO₄²⁻ concentrations (red diamonds) vs. time (UTC), measured the 6th (A)and 7th (B) July 2011 on "Super Site 1" during the BLLAST Field Campaign

Conclusion and Outlooks

-Sulfates production is a good example of submicronic aerosols formation from gas-particle conversion (nucleation/growing processes) during the 2011 Field Campaign.

-But distant sources have affected the aerosol chemistry in the boundary layer on "Super Site 1".

-In case of subsequent field campaigns, a "real time" aerosols monitoring, combined with individual particle analyses, will be necessary to make links between aerosol chemistry and turbulent phenomena in the boundary layer.

Acknowledgements

ALL DE COLUMN

Many thanks to Clara Darbieu (LA-Toulouse) and Caroline Rufin-Soler (ULCO-Dunkerque) for their help in SMPS measurements and to all the colleagues from the *Centre de Recherches Atmosphériques (CRA), Lannemezan-Campistrous,* for their assistance during the Field Campaign !