

TKE decay during BLLAST

Fabienne Lohou, Clara Darbieu, Marie Lothon, and all bllasters.

1- Law of the TKE decay

(Sorbjan, 1997)

1- Law of the TKE decay

1- Law of the TKE decay?

The power law t⁻ⁿ confirmed with n equals 2 to 6 during the LAT

(Nadeau et al, 2011)

 t'/t_*

EET

2- Which forcing prevails?

Nadeau, Pardyjak et al. (2011) Rizza (2013) *(LES average BL)*

$$\frac{\partial \overline{e}}{\partial t} = \frac{g}{\overline{\theta}} (\overline{w' \theta_v'}) - \varepsilon \quad \text{with} \quad \varepsilon = C \frac{\overline{e^{3/2}}}{zi} \quad (\text{Niewstadt and} \\ \text{Brost, 1996})$$
agrees with Nadeau et al.

Pino et al. (2006) *(LES) : n depends on shear conditions* Goulart et al. (2011) *(LES) : n depends on shear conditions at surface*

Goulart (2011) (LES of strong shear case Ug = 15 m/s)

Gibert, BLT2012: Importance of transport and pressure terms

✓ Scaling of the TKE decay: TKE / $w_*^2 = f(t / t_*)$ with w_* and t_* (or w_m in Pino et al., 2003) defined for fully convective conditions (Sorbjan, 1997).

✓ Going further in the vertical discretization of the TKE decay in the whole ABL.

- to extend the work on the decoupling
- to diagnose the forcings at the different heights

BLLAST contribution

All the IOP, All the surfaces, All the aircraft flights ... + TB, RPAS to be added

BLLAST contribution

So ... a lot to do... but not much done up to now !

Scaling of TKE decay

A normalization by w_* and t^* defined when the conditions are fully convective do not give a real view of what is happening during the LAT over the different surfaces.

Scaling of TKE decay during BLLAST

Timing of TKE decay during BLLAST

Bergen, 14-16 August 2013

Timing of TKE decay during BLLAST

Assuming horizontal homogeneity:

Imbalance term usually estimated assuming **steady state**

Assuming horizontal homogeneity:

Imbalance term usually estimated assuming **steady state**

o dissipation term (spectra)

Assuming horizontal homogeneity:

Imbalance term usually estimated assuming **steady state**

o dissipation term (measured)

During BLLAST buoyant production and dissipation do not seem to explain the TKE decrease.

Conclusions

• TKE timing

Scaling by w* and t* ? (Van Driel and Jonker, 2011)

 \succ no explanation for the link between TKE decay rate and H decay rate yet.

• Forcings

 difficulty to estimate each of the TKE budget terms with surface data (dissipation and mechanical production).
 buoyant production and dissipation not sufficient to model the TKE during BLLAST.

To be done:

Use of the divergence mast for the surface TKE budget.

Use of the surface/ aircraft/ TB / RPAS data for a vertical description of the TKE decay in the whole ABL. And LES for the forcings.