Role of the residual layer and large– scale subsidence on the development and evolution of the convective boundary layer

Estel Blay–Carreras, **David Pino**, Jordi Vilà– Guerau de Arellano, Anneke Van de Boer, Olivier Decoster, Oscar Hartogensis, Henk Pietersen, Marie Lothon, Clara Darbieu, Fabienne Lohou

Motivation

- Which role play RL during the morning transition?
- How important is subsidence during the whole evolution of the convective boundary layer?
- How potential temperature, boundary–layer depth and TKE budget evolve depending on the presence of RL?
- What are the consequences to the observed CO₂ mixing ratio?

Methodologies

- Observations taken during the BLLAST campaign (1st July, IOP9). Eddy Covariance instruments at SS1 and radioundings.
- Large-Eddy Simulations (DALES, Heus et al., 2011). Sensitivity studies varying the initial profile and subsidence.
- Mixed-layer model. Subsidence is taken into account.

Numerical experiments

DALES (Heus et al., 2011)
256³ points. 12.8x12.8x3 km³ domain
From 0730 until 2000 UTC.
MLM from 1100 UTC (developped CBL). Includes subsidence

Surface Flux mean of EC observations at SS1

Numerical experiments

de Catalunya **Politècnica** niversitat

Numerical experiments

Initial wind profile (based on RS at 0730 UTC) •below the FA \rightarrow u = -2.95, v = 0.52 m s⁻¹ •At FA similar to geostrophic wind **Geostrophic wind:** u_g= 10, v_g= 0 m s⁻¹ \rightarrow constant with height

Four different DALES runs are performed by combining residual layer & subsidence

	0730 UTC		1100 UTC
	RL	nRL	MLM
$\theta_{1,0}$ (K)	293	293	295.5
$\Delta \theta_{1,0}$ (K)	2	5	8
$z_{1,0}$ (m)	210	210	1300
$\theta_{\rm RL,0}$ (K)	295	8. 9 0	-
$\Delta \theta_{\rm RL,0}$ (K)	9		
$z_{\mathrm{RL},0}$ (m)	1422		3 <u>4</u>
$\gamma_{ heta}~({ m K~m^{-1}})$	0.005	0.005	0.005
$q_{1,0} ~({\rm g~kg^{-1}})$	7.16	7.16	8
$\Delta q_{1,0}~(\mathrm{g~kg^{-1}})$	-1.66	-5.66	-5
$q_{{ m RL},0}~({ m g~kg^{-1}})$	5.50		(a .)
$\Delta q_{ m RL,0}~(m g~kg^{-1})$	4.41	8	-
$\gamma_q \; (\mathrm{g \; (kg \; m)^{-1}})$	-0.00035	-0.00035	-0.00035

Temporal evolution of:

- Potential temperature vertical profile
- •2-m potential temperature
- •Boundary layer depth (first inversion from the surface)
- •Turbulent kinetic energy vertical profile

•Observations CO₂ mixing ratio & surface flux

Potential temperature vertical profile

Potential temperature vertical profile

RLs case (solid blue) fit the potential temperature measured by RS

Mixed–layer potential temperature

Two regims observed (symbols):

- 1. Low BL, large inversion. Large heating rate.
- 2. Large BL, smaller inversion. Smaller heating rate.

Mixed-layer potential temperature

Same surface heat flux for all numerical experiments (lines).

RL (blue) cases fit observations. Two regimes are simulated. nRL (green) overestimates the observed 2-m temperature.

Boundary–layer depth temporal evolution

- 🔶 Minimum buoyancy flux
 - Maximum virtualpotential temperature gradient

RL cases simulate the inclusion of RL into BL nRL cases \rightarrow 4 hours delay

Subsidence play an important role → no subsidence cases overestimate the depth 200 m

Entraiment heat flux

Before the transition larger entrainment fluxes for the nRL case (strong inversion).

At the transition, the minimum of the heat flux increases due to the increase of $\Delta \theta_1$ and entrainment velocity. Afterwards, RL and nRL cases present similar entrainment flux.

Catalunya 0 **Politècnica** Universitat

Turbulence decreases when BL grows and inversion weakens

Conclusions

- **DALES RL** cases fit the observations.
- During the inclusion of RL, entrainment heat flux increases. Afterwards, similar entrainment heta flux is obtained for all the cases.
- Subsidence is important to correctly simulat the BLevolution during the afternoon.
- Shear and buoyancy terms are the largest during morning. After the inclusion of the RL, buoyancy increases in the lower part of the CBL and at the inversion and shear decreases at the inversion.

ratio

CO₂ surface flux and mixing

0600 – 0900 UTC \rightarrow important **decrease** of the CO₂ mixing ratio due to entrainment.

Transition cannot be observed in the CO₂ mixing ratio

For all the land uses, C is approx constant (less than 1 ppm variation) from midday.

12:00 15:00 18:00 21:00 00:00 03:00 06:00 09:00 12:00 15:00 Time (UTC)

ratio CO₂ surface flux and mixing

Conclusions

- During the morning, CO₂ mixing ratio decreases even with positive CO₂ fluxes due to the importance of CO₂ entrainment flux.
- During the afternoon, CO₂ mixing ratio is almost constant and small differences are found depending on the landuse (storage term is very small) due to the large value of z₁.