MAQ-WUR current and future (MSc/BSc) studies:

Bridging scales between synoptic/meso and
 BL-dynamics in the morning and afternoon transition
 (example in this presentation, Henk's work)

-Role of surface heterogeneity

-Role of entrainment

Near Surface Features in Very Stable Boundary Layers during BLLAST

- Two Extreme Stable Cases
 - IOP 3, 20-06-11
 - IOP 4, 24-06-11
- Focus on Shallow Drainage Flow/ Skinflow

IOP 3+4 – Time Scales

- Combination of Ogive and Wavelet
 - Filter out large time scales. Here we filter out >10 min.
 - Useful to determine averaging time
 - Quick meth
- Easier to use compared to wavelet figures

IOP 4 - Velocities

- A. Oscillatory behavior of wind speed
- B. Time lag between vertical levels
- C. Maximum jet around 2m
- D. Wind shifts of almost 100 degrees.
- E. Elevated turbulence

= water channel

IOP 4 - Temperatures

- Large negative deviations at T_{2m}
- Cold micro-front at point 4
- From video analysis: vanishing cold spot in direction of the flow.
- Surface temperature does not always evolves synchronically North and South of the water channel → heterogeneity is important

Research Outcomes

- Drainage flow comes appears with micro-fronts
 - Sharp temperature deviations
 - Wind shifts
- Weaken and Strengthen of the flow shows an oscillatory pattern
 - New pulses are often characterized by a micro-front passage.
- Investigation of physics is challenging due to very small fluxes. E.g. TKE budgets appeared to be almost useless.
- Drainage flow caused oscillations in (near) surface temperature. Use of IR camera in relation to drainage flow was not earlier reported in literature or captured.
- The IR photos appeared to be very useful
- The presence of such flows during the BLLAST campaign might be taken into account in other BLLAST studies.
 - Variance is determined by various time scales ; acting time scales are very dynamical

PETER (BSc-student Arnold)

conditions

С

Critical transition

Very stable nocturnal BL

Neutral nocturnal BL

Critical transition

Eddy Covariance + Radiation: TKE, H, τ , σ_w

Early warning?

Only at night after DOY 172 (21 June);

high autocorrelations in TKE, Η, τ, σ_w
high 'Kendall' numbers

HENK (MSc Jordi)

Large scale influences on boundary layer development

 Modeled boundary layer development using <u>observations</u> for initial and boundary conditions

Adding subsidence subsidence and advection

<Bulk averaged> TKE evolution

Lower TKE due to homogeneity in models?

Conclusions

 External forcings (subsidence) are quantified and are relevant.

 With the use of ML theory, the structure and evolution of the boundary layer can be modelled quite well

=> support data interpretation, LES and mesoscale modelling

future

 Modelled TKE is still too low=> intercomparison with different IOP to find it out

Potential missing factors:

- Transferences from mean kinetic energy to turbulent kinetic (role of wind shear, also directional)
- At smaller scales, induced secondary circulations due to surface heterogeneity is not included in the models

Area averaged surface fluxes

Oscar is working on this...

RADIATION DIVERGENCE

BLEF

Gert-Jan is looking for a student...

