First mesoscale model intercomparison

David Pino, F. Couvreux, M. A. Jiménez, W. Angevine, G. J. Steeneveld and J. Cuxart

Motivation

- How do mesoscale models reproduce the BLLAST observations during IOP9-11 (30 June, 1st and 2nd July 2011).
- How important are the PBL and surface schemes.

Methodology

- BLLAST observations including:
 - Radiosounds: GRAW, MODEM, SUMO.
 - Surface and EC stations at the different sites.

• Mesoscale models with different parameterizations and land use schemes: MesoNH, WRF, MM5.

Numerical set up (I)

- 2 nested domains of 100x100 points of 9 and 3 km horizontal resolution (MM5 and WRF). MesoNH uses only 1 domain of 2 km horizontal resolution.
- Initial conditions from ECMWF 0.125°x0.125° analysis included every 6 hours.
- 50 σ-levels up to the tropopause (85 z-levels for MesoNH)
- Two-way nesting. Orographic shadowing

Numerical set up (II)

Parameteri zation/mo del	PBL	Surface	Cumulus (Domain1/2)	Radiation	Moisture
MM5 (UPC)	MRF-Eta	5 layer	Kain- Fristch/None	Cloud radiation	Simple ice
WRF (NOAA- WU)	TEMF-MYJ MRF-YSU- MYNN- QNSE	Noah 5 layer/No ah	Kain- Fritsch/none	RRTM-G Shortw: Dudhia; Longw: RRTM	WSM 3
MesoNH (UIB)	1.5 TKE (Cuxart et al 2000)	ISBA (Noilhan and Planton, 1989)	None (the run is made with 1 domain at 2km resolution)	ECMWF radiation scheme Morcrette (1989)	'ICE3' vapo r, rain, cloud, ice, snow, and graupel

IOPs 8-10 (30th June-2nd July)

MEDIAN CN2 (LOG(M-2/3)) UHF CRA -13. -17. -15. -14. -12. -11. HEIGHT (KM/AGL) 00 02 04 06 08 10 12 14 16 18 20 22 00 TIME (DAY-UTC) 01JUL11 01JUL11 UHF-CRA Low Mode [5beams,4kW,75m,18mn,mean:30mn]

Cloud free except 30th June. Winds: N in the BL, W aloft. q for three days: around 6 g/kg during the day in the BL. Larger T on 2nd July.

Results (I)2m temperatures (1st July 12UTC)

2m temperatures (2nd July 18UTC)

Results (II)

2m relative humidity (1st July 12UTC)

Results (II)

2m relative humidity (2nd July 18UTC)

Results (III)

10m wind speed (1st July 18UTC)

•MM5-MRF tends to have too large sensible heat flux (similarly to ARPEGE) on the closest point to Lannemezan.

•WRF-5layer with MRF and YSU also tends to have a slightly too large sensible heat flux.

• WRF-Noah with all the parameterizations except TEMF and MYJ tends to underestimate SH during the afternoon

• MesoNH and AROME give similar SH to the observed ones

- Large variation of LE.
- WRF-Noah MYJ and EMF overestimate LE.

Too cold night T simulated by AROME and ARPEGE during early morning.MesoNH performs well.

• WRF-Noah underestimates nighttime and afternoon T (MRF, MYNN, YSU) due to low SH.

- MM5-MRF underestimates nighttime relative humidity
- WRF-Noah (MYJ, TEMF) overestimates RH (in agreement with the too large latent heat flux).
- MesoNH performs well.

• WRF-Noah overestimates RH at night.

U is too negative in the models.V is better reproduced

•SWin: a decrease in the afternoon in WRF for the 1st July (presence of clouds? not observed)

Clouds simulated???

Results (V)

Vertical profiles of the main variables at Lannemezan

Large difference very different boundary layers schemes

Conclusions

- Despite all the models have the same initial and boundary conditions large differences have been found between them: 4 K, 30%, 5 m/s.
- These differences are found between different PBL parameterizations for the same model or same parameterizations of different model.
- MesoNH is the best model fitting the fluxes observations and MM5-MRF the worst.
- Regarding the afternoon transition, the models without Noah-LSM reproduce better the observations.

Future work

- To analyse the sources of the difference encountered: SWin, SH, LE, ...
- To study why LS schemes don't produce better results.