IOP5 – a golden day?

Boundary layer development and large scale influences

Henk Pietersen Supervisor: Jordi Vila

Outline

- Research strategy
- Case
- Observations
- ML modeling
- Driving factors
- Continuation

Research Strategy Boundary layer & aircraft data

- case selection from observations
- First characterisation of case
 - observations
 - Mixed Layer model
 - identify main processes
- Modeling turbulence
 - DALES-model
- Back to observations
 - aircraft turbulent data

Case selection

• "Golden day"

Good match for classical boundary layer theory

• A lot of BL measurements \rightarrow IOP's

• Few disturbing factors

IOP5 a clear day

BLLAST-BOC

IOP5 a clear day

BLLAST-BOC

IOP5 radiation

IOP5 synoptic scale

IOP5 synoptic scale - MM5

12 UTC

21 UTC

Joan Cuxart, BLLAST forecast

Upper air?

Upper air?

22:53 UTC

IOP5 synoptic scale - trajectories

IOP5 Large scale influences

Surface measurements

Surface measurements

Surface measurements

Vertical profiles

BL evolution

Modeling strategy

- Step-by-step reconstruction
- Initialize model with fluxes from observations
- Basic run
- Subsidence
- Advection
- Shear
- Surface heterogeity

Mixed layer

Les

ML model description

- from Tennekes and Driedonks, 1981
- Boundary layer simplification
- BL structure
 - Single layer
 - Jump
 - Upper air gradient
- Prescribe:
 - Initial state
 - Fluxes
 - (changes in boundary conditions)
- Useful tool to investigate BL processes

BL evolution

ML model initialisation fluxes

ML model basic run

ML model basic run

ML model subsidence

ML model subsidence

ML model prescribed subsidence

ML model prescribed subsidence

ML model - subsidence (-0.36 K/h + advection (-0.68 g/kg/h)

Subsidence

Advection

ML model - subsidence (-0.36 K/h + advection (-0.68 g/kg/h)

Subsidence

Case analysis driving factors

- Strong fluxes, low BL-height
- Early development is unclear
- Subsidence is important to reproduce BL evolution
- Some advection is needed to get BL parameters correct
- No prototype Boundary Layer
- Main influencing factors identified

Continuation: LES modeling

- Use fluxes from measurements
- Use ML modeling as a base
- Try to reproduce the ML results
- Look at BL behaviour with subsidence
- Directional shear
- Surface heterogeneity
- Compare with turbulent data of aircrafts