Representation of the afternoon transition in **B**

Numerical Weather Prediction models: evaluation with BLLAST data

F. Couvreux, E. Bazile, G. Canut, Y. Seity, M Lothon, F. Lohou,

F. Guichard, E Nilson et al

- 1. Motivations and Methodology
- 2. Reproduction of synoptic and diurnal variability
- 3. Reproduction of afternoon transition
- 4. Conclusions

turbulent probe on tethered balloon

Motivations:

Improve models = an often justification to deploy instruments in field campaign but not so often used (ex: Atlaskin and Vihma, 2012)
BLLAST field campaign provided a large data set to evaluate finely the vertical structure of meteorological variables and turbulence
Can we use the NWP models to derive advection for future studies: how good are they in representing the afternoon transition ?

The methodology:

Extract the model outputs at several points around the location of deployment
 -> for 3 models (AROME, ARPEGE, ECMWF)

- Compare the surface energetic budget and the thermodynamical vertical structure with observations **for IOP days**

Methodology :

<u>Models</u> 9 pts -> ECMWF : 16 km 3 pts -> ARPEGE : 10km 16 pts-> AROME : 2.5km

Varying resolution and parametrization

BLEAST

RS: MODEM and Vaisala + SUMO Surface sites: 7 types : surface fluxes, radiative fluxes, meteorological var UHF: boundary layer height Aerosol lidar: boundary-layer height Lidar doppler: turbulent kinetic energy Balloon turbulent probe: tke

Observations

Characteristics of each points :

METEO FRA

Toujours un temps d'avance

Tables:

Name	ARO1	ARO2	ARO3	ARO4	ARO5	ARO6	ARO7	ARO8	ARO9	ARO10	ARO11	ARO12	ARO13	ARO14	ARO15	ARO16
alt	535	611	595	558	552	605	609	593	532	567	579	575	505	521	529	527
veg 🤇	0.95	0.93	0.92	0.92	0.92	0.93	0.85	0.94	0.93	0.91	0.91	0.91	0.93	0.92	0.88	0.90
LAI	3.4	3.5	3.2	3.4	3.5	3.4	3.3	3.2	3.5	3.7	3.3	3.5	3.8	3.7	3.2	3.5
20	0.78	0.53	0.26	0.16	0.24	0.38	0.45	0.39	0.49	0.37	0.18	0.47	0.83	0.64	0.23	0.38
albed Q	0.177	0.185	0.191	0.198	0.195	0.186	0.159	0.169	0.186	0.189	0.195	0.185	0.175	0.180	0.192	0.188
Name	ARP1	ARP2	ARP3	ECM1	ECM2	ECIMWF3	ECMWF4	ECMWF5	ECIMWF6	ECMWF7	ECIMWF8	ECMWF9				
alt	701 🤇	477	778	1068	894	772	510	491	463 🤇	282	314	325				
veg	0.86	0.84	0.85	19/1- 0.56	19/1- 0.86	19/1-0.9	19/1-0.92	19/0-1	19/1-1	19/1-1	19/0-1	19/0-1				
LAI 🕻	3.67	3.18	3.58													
20	1.8	0.17	1.93	6.2	5.1	4.8	0.65	0.62	0.88	0.65	0.62	0.62				
albed Q	0.12	0.2	0.12	0.149	0.149	0.149	8.15	0.15	0.15	0.15	0.15	0.15				

Albedo in observations :

- Edge site : alb_wheat=0.15 ; alb_grass=0.24
- Corn site : ~0.14 [0.07,0.165]
- Moor site : ~0.2 [0.18,0.22]

Radiative and turbulent fluxes: all IOPs

Sensible heat flux strongly negative during the hot period, large variability

ST

Meteorological variables: all IOPs

ARPEGE ECMWF AROME OBSERVATIONS

Good synoptic variability

ECMWF : often too cold at night during the hot period

During the hot period, models produce large variability of T at night not in observations

Better representation of synoptic variability of the wind in AROME

ECMWF : often too dry at day

Diurnal cycle composite:

maximum of boundary-layer height

Synoptic variability well reproduced by models

Evolution of vertical structures: 2 cases

Impact of boundary-layer scheme

Impact of parameterization remotely and then advected over the area Similar behaviour btw ARPEGE and AROME/KFB

Turbulence kinetic energy: all IOPs

•AROME underestimates the value close to the surface but does predict some tke in the morning

• AROME & ARPEGE predict the right order of magnitude of the in the boundary layer

<u>Reproduction of synoptic and diurnal</u> <u>variability : summary</u>

- Models represent the main ingredients of the synoptic variability : clear / cloudy days, hot period, high/low BLH, ...
- Some systematic biases : too much LE for AROME, too much H for ARPEGE too dry at day in ECMWF ... but no direct link to Temperature
- Different types of growth of the blh well reproduced
- Vertical profiles : better representation of the vertical profile of wvmr in AROME partly due to the parameterization
- Good order of magnitude of the tke for both AROME and ARPEGE

Afternoon transition: Tke

Afternoon transition: Sensible heat flux

ARPEGE AROME

OBSERVATIONS

Afternoon transition: 2m-temperature

AROME : no direct ling in the behaviour of H and 2m-tre (no special behaviour of the previous points AROME : less variability among points than among sfce obs ; ARPEGE : very close among points 26 and 27 June : more or same variability among points that among sfce obs

Towards a prediction of the transition?

range of H=0 wider in models, in particular later

Afternoon transition: Tke

AROME underestimates the value close to the surface Better agreement with estimation from $w^2 \Rightarrow 1D$ -scheme valid?

Afternoon transition: Tke

AROME & ARPEGE: earlier decrease of the at higher levels Observations: earlier decrease in w² (cf lidar measurements) not really in the?

Conclusions:

- well reproduced synoptic variability : cloud cover, blh variability (*reproduction of the three types*), hot period (*small rh diurnal cycle, higher ws, small day H, negative night H, large LE*)
- systematic biases different for each model: ARPEGE too large H, AROME too large LE, dry bias at night in ECMWF, dry boundary layer in ARPEGE, cold boundary layer in all models
- **first evaluation of the model tke** : good order of magnitude (slight underestimation of AROME), synoptic variability of diurnal cycle better reproduced by AROME
- Afternoon transition: two types (*ILS/descent*) not really reproduced, stable BL very thin in ARPEGE, relationship btw $\langle H \rangle_{15}$ and t_H0
- **1D-assumption:** questionned in the transition; strong anistropy in the low levels and in the boundary-layer during transition

Afternoon transition: vertical profiles

