Lifted temperature minimum during the evening transition

E. Blay-Carreras, E. Pardyjak, **D. Pino (UPC)**, S. W. Hoch, J. Cuxart, D. Martínez, and J. Reuder

Introduction | Objectives | Methodology | Observed LTM | Variables influencing LTM

- Lifted Temperature Minimum (LTM) is characterized by a temperature minimum some tenths of cm above to the surface (0.1-0.5 m).
- LTM during the **night** was first reported by **Ramdas and Atmanathan** (1932). Lake (1956) and Raschke (1957) confirmed it.
- LTM profiles observed over natural (Oke, 1970) and artificial surfaces (Mukund et al., 2010, 2013).
- Mukund et al. (2010) showed ↓ surface emissivity ↑ the intensity of LTM. Thermal diffusivity is also another important parameter.

Introduction | Objectives | Methodology | Observed LTM | Variables influencing LTM

- LTM intensity was weaker with increasing **turbulence** (Oke, 1970). *Ri* is used to define the threshold of the turbulence.
- Narasimha (1991); Vasudeva Murthy et al. (2005); Mukund et al. (2010, 2013) stressed the radiative origin of LTM.
- LTM was observed with cloudless and calm conditions.
- Vasudeva Murthy et al. (1993) were the first ones to propose a model. Mukund et al. (2010) and Ponnulakshmi et al. (2012) improved it.

Introduction | **Objectives** | Methodology | Observed LTM | Variables influencing LTM

- We analyze LTM occurrence during the evening transition.
- Our research objectives :
 - 1. To investigate the **existence** of the LTM during the **evening transition**.
 - 2. To study the relevance of mean **wind characteristics** (driven by orography).
 - 3. To analyze the importance of **turbulence** to observe LTM during evening transition.
 - 4. To analyze the role **radiation** in the appearance of LTM.

Introduction | Objectives | **Methodology** | Observed LTM | Variables influencing LTM

T1 \rightarrow 10-m instrumented mast with six Sonic Anemometer Thermometers and Campbell Scientific nine FW05 FWs.

T2 → 2-m mast with eight FW3 FWs located at 0.015, 0.045, 0.075, 0.14, 0.3, 0.515, 1.045 and 1.92 m.

A Kipp&Zonen net radiometers RN-Lite2 was installed.

Surface moderate emissivity and thermal difussivity.

Introduction | Objectives | Methodology | **Observed LTM** | Variables influencing LTM

• By using **T1** and **T2** measurements on 24, 25, 27, 30 June and 1 and 2 July 2011.

Introduction | Objectives | Methodology | **Observed LTM** | Variables influencing LTM

Characteristics of the observed LTM at T1 and T2 for all the studied IOPs.

IOP	LTM	LTM height T1 (m)	LTM height T2 (m)	LTM intensity T1 (K)	LTM intensity T2 (K)	LTM duration T1 (min)	LTM duration T2 (min)
24-Jun-11	YES	0.131	0.07-0.14	0.35	0.7	20	40
25-Jun-11	YES	0.131	0.3	-	0.5	-	40
27-Jun-							
11	NO	-	-	-	-	-	-
30-Jun-11	YES	0.131	0.07-0.14	0.5	0.3	20	40
1-Jul-11	YES	0.131	0.07-0.14	0.35	0.7	20	60
2-Jul-11	YES	0.131	0.07-0.14	0.3	0.5	40	70

Introduction | Objectives | Methodology | Observed LTM | Variables influencing LTM

Mean wind characteristics (2.2 or 2 m)

Introduction | Objectives | Methodology | Observed LTM | Variables influencing LTM

Turbulence (T2, 2 m) – Wind speed at 20 Hz

Introduction| Objectives | Methodology| Observed LTM | Variables influencing LTM

Turbulence

•Gradient **Richardson** number (Ri_g) crucial for studying LTM at night.

• Ri_q threshold 0.1 at night to observe LTM (Oke, 1970).

- •We calculate Ri_g using T_{base} and $T_{LTM\uparrow}$
- •Large increase rate of Ri_g is obtained in the cases with a faster decrease of turbulence.

Introduction| Objectives | Methodology| Observed LTM | Variables influencing LTM

Radiation

•Narasimha (1991); Vasudeva Murthy et al. (2005); Mukund et al. (2010, 2013) pointed out the **radiative origin** of LTM.

•We estimate **longwave radiation** at **LTM height** by using the equation of conservation of heat:

$$\frac{\partial \overline{\theta}}{\partial t} + \overline{U_j} \frac{\partial \overline{\theta}}{\partial x_j} = v_{\theta} \frac{\partial^2 \overline{\theta}}{\partial x_j^2} - \frac{1}{\overline{\rho} C_p} \frac{\partial Q^*}{\partial x_j} - \frac{L_v E}{\overline{\rho} C_p} - \frac{\partial (u_j' \theta')}{\partial x_j}$$

- By assuming horizontal homogeneity and neglecting subsidence:

$$\frac{\partial \overline{\theta}}{\partial t} = v_{\theta} \frac{\partial^2 \overline{\theta}}{\partial z^2} - \frac{1}{\overline{\rho} C_{\rho}} \frac{\partial Q^*}{\partial z} - \frac{L_{\nu} E}{\overline{\rho} C_{\rho}} - \frac{\partial (\overline{w' \theta'})}{\partial z}$$

 $\approx Lu|_{z=0m} = \mathcal{E}\sigma_b T_g^4$

- We integrate this equation from ground to LTM height:

Introduction | Objectives | Methodology | Observed LTM | Variables influencing LTM

Radiation

•LTM \rightarrow radiative characteristics of the **air near the ground** is modified (Mukund et al., 2013).

•Change of decay rate at LTM height between 17:30-18:30 UTC.

Introduction | Objectives | Methodology | Observed LTM | Variables influencing LTM

Radiation - Cloud Cover

Mukund et al. (2010) reported that **LTM–intensity** decreases when **clouds** were present showing the importance of **radiation** in the LTM.

Conclusions

Lifted temperature minimum during evening transition

- LTM: different intensity and duration for all IOPs (no LTM on 27/06/2011).
- LTM is observed during evening transition in calm conditions (mountain-plain circulation).
- During early evening calm period, we observe a decrease in wind velocity and turbulence that enhance the intensity of the LTM.
- LTM is observed due to a change in **radiative conditions**.

Thank you!!!