BLLAST workshop 2015, Barcelona

A comparison between atmospheric boundary layer evening transitions at two experimental sites

BLLAST

<u>Mariano Sastre</u> Carlos Yagüe Carlos Román-Cascón Gregorio Maqueda

Complutense University of Madrid (Spain)

Correspondence: msastrem@ucm.es

Outline

1.- Motivation

2.- Sites, data and methodology

3.- ResultsObservationsWRF experiment

4.- Summary and conclusions

Motivation

Two experimental sites comparison: learn about similarities and differences

> Numerical study: test model response to variations

Experimental sites

Experimental sites

CIBA

(Spain)

•840 m asl

mountains

terrain

BLLAST (France)

•600 m asl

•Plateau near mountain foothills

•Heterogeneous terrain

Experimental sites

Data and instruments

Methodology

- •Transitions with "fair weather" conditions
- •Timing normalization: sunset => t=0
- •Time intervals considered: t=[-4, 4] h
- •Simulations: WRF model

Observations: average values

Δθ (K)

CIBA

BLLAST

Observations: average values

CIBA BLLAST TKE (m² s⁻²)

 $\text{TKE} = \frac{1}{2} \left(\overline{u'^2} + \overline{v'^2} + \overline{w'^2} \right)$

Settings overview

MODEL	WRF-ARW version 3.5
INITIAL AND	NCEP FNL data
BOUNDARY	1° resolution;
CONDITIONS	every 6 h
HORIZONTAL	3 nested domains
RESOLUTION	Grids of: 9 km, 3 km,
	1 km
VERTICAL	50 eta vertical levels
RESOLUTION	(8 between ground and
	100 m)
TIME STEP	3.3 s
SPIN UP	24 h
PBL	YSU
LSM	NOAH

Settings overview

MODEL	WRF-ARW version 3.5
INITIAL AND	NCEP FNL data
BOUNDARY	1° resolution;
CONDITIONS	every 6 h
HORIZONTAL	3 nested domains
RESOLUTION	Grids of: 9 km, 3 km,
	1 km
VERTICAL	50 eta vertical levels
RESOLUTION	(8 between ground and
	100 m)
TIME STEP	3.3 s
SPIN UP	24 h
PBL	YSU
LSM	NOAH

LATENT HEAT FLUX

BLLAST

4

LH (W m⁻²)

2m-TEMPERATURE

CIBA

PBL HEIGHT

WIND

Summary and conclusions

- Main similarities \rightarrow global qualitative observed evolution
- Main differences
 Main differences
 -extreme values
 -time lags
 -turbulence decay
 -katabatic occurrence
- Role of moisture \rightarrow decisive for radiative surface cooling
- Simulations: importance of modifying humidity \rightarrow effects greater & lasting longer at driest site

More...

- Sastre, M., Yagüe, C., Román-Cascón, C., Maqueda, G.: Atmospheric boundary layer evening transitions: a comparison between two different experimental sites, Bound. Lay. Meteorol. (under review).
 - Averages for only the katabatic cases
 - Case study
 - * Variables related to their value at t=-4 h
 - * Multi-Resolution Flux Decomposition

Observations: average values

CIBA

BLLAST

SENSIBLE HEAT FLUX

Crossover: mean time

	Mean time	
	[H = 0]	$[\varDelta \theta = 0]$
CIBA	-47 min	-43 min
BLLAST	-1 h 36 min	-1 h 17 min

sunset => t=0

Case study: MRFD (u*)

CIBA

BLLAST

 $u_{*} = \left[(\overline{u'w'})^{2} + (\overline{v'w'})^{2} \right]^{1/4}$

Case study

BLLAST (2 July 2011)

Case study

Case study

CIBA (5 August 2009)

BLLAST (2 July 2011)