State of the Art In-Situ Turbulence Measurements With Unmanned Aerial Systems (UAS) in the ABL

Norman Wildmann, Jens Bange Environmental Physics, Centre for Applied Geoscience (ZAG) Eberhard Karls University Tübingen

> 11 June 2014 AMS - BLT 2014, Vienna Session 13A

Outline

- 1. Overview of Systems
- 2. Multi-purpose Airborne Sensor Carrier (MASC)
- 3. Sensor Equipment and Data Acquisition System for Turbulence Measurements
 - (a) Flow Probe
 - (b) Temperature Sensors
 - (c) Humidity Sensors
- 4. Outlook

UAS for in-situ turbulence measurements

- Number of UAS for turbulence measurement in the lower atmosphere is increasing
- Selection of examples:

- All examples from ISARRA members http://www.isarra.org
- Common strategy: Multi-hole probe measurements for turbulent flow
- Different size and weight classes allow different types of instruments

MASC: Multi-purpose Airborne Sensor Carrier

operated at University of Tübingen

(I told the designer, that I don't care about the colour, as long as it is well visible ...)

wingspan:	2.73.5 m
total weight:	< 6 kg
incl. sci. payload:	1.5 kg
cruising speed:	25 m/s
endurance:	pprox 1 hour
electrical engine	
autopilot:	ROCS

Autopilot System controlling MASC

Many thanks to Prof. Walter Fichter and his team at

iFR - Institut für Flugmechanik und Flugregelung

University of Stuttgart

http://www.ifr.uni-stuttgart.de

rocs@ifr.uni-stuttgart.de iFR – Institute of Flight Mechanics and Control Universitaet Stuttgart

Experiments with the UAV MASC

More than 100 flights in over 20 days in 2013

Boundary Layer Meteorology

Turbulent transport

Transition phases

Wind Energy Research Wake measurements

Turbulent structures

Airborne Sensor Requirements

Common requirements for sensors in airborne (UAV) applications:

- 1. Light weight / Small size
- 2. Fast response / Resolve small scale turbulence
- 3. Wide calibration range
- 4. Robustness
- 5. Good absolute accuracy / Long-term stability
- 6. Low cost
- 7. Allow measurements in clouds

Special demands for polar research:

- 1. Low temperature stability
- 2. Resistance to icing
- 3. Easy handling with gloves

'Eierlegende Wollmilchsau'

MASC sensor system

EBERHARD KARL

TÜBINGEN

- complete thermodynamic sensor package:
 - thermocouple
 - fine wire resistance thermometer
 - capacitive humidity sensors
 - flow probe
 - inertial measurement unit (IMU)
 - GNSS position and velocity
- turbulence measurement up to 30 Hz
- live data observation on ground-station computer
- 100 Hz on-board log to SD-card

UNIVERSITAT TUBINGEN

Flow probe

Five-hole probe, design considerations

Important:

- Proper design of tubing system
- Choice of pressure transducers
- Wind tunnel calibration
- Analog and digital filtering

Flow probe

Five-hole probe, capabilities

- Small scale turbulence in flight is captured mainly by airspeed measurement with the 5HP
- Careful design of the setup can improve results with standard 5HPs significantly

Flow probe

Five-hole probe, capabilities

- Small scale turbulence in flight is captured mainly by airspeed measurement with the 5HP
- Careful design of the setup can improve results with standard 5HPs significantly
- Future: Fast response probes for kHz-response?

TÜBINGEN

Temperature sensor

Fine Wire Pt Resistance Thermometer

FWPRT, late afternoon

- $13\mu m \text{ or } 25 \mu m \text{ wire}$
- Good comparison to radiosonde and tower measurements
- Tested for radiation effect, adiabatic heating and self-heating
- Accuracy up to 0.1 K (depending on calibration)
- Resolution and precision 0.01 K

eberhard karls UNIVERSITÄ

TÜBINGEN

Temperature sensor

Fine Wire Pt Resistance Thermometer

- 10 Hz response (after low-pass noise filter)
- Performance similar to thermocouple, but absolute temperature output
- First used in very low temperatures in Spring 2014 at Svalbard on a SUMO aircraft

Humidity sensor

Capacitive Humidity Sensor P14 Rapid, by IST

- Size and weight restrictions of small UAV only allow capacitive sensor
- Time response needs to be enhanced for turbulence measurements
- Model and signal restoration approach

TÜBINGEN

Humidity sensor

Capacitive Humidity Sensor P14 Rapid, by IST

- Signal restoration is possible in defined conditions
- Noise in signal limits the achievable upper frequency
- Similar techniques are applied in multi-hole probe measurements and thermocouple measurements in gas turbines

TÜBINGEN

Data acquisition system

Airborne Meteorological Onbard Computer, AMOC

- Microcontroller Board with two STM32
- ADC, 24-bit, 16 channels for pressure transducers and temperature sensors
- digital interfaces for IMU/GPS, humidity sensor
- SD card log at 100 Hz
- Downlink to groundstation at 1 Hz

Outlook

- Boundary Layer research
 - DFG Aerosol project in cooperation with TU Braunschweig and IFT Leipzig
 - WESS groundstation network
 - Local cooperations with Uni Hohenheim
- Wind energy
 - Lidar Complex, WindForS (www.windfors.de)
 - KonTest, WindForS (www.windfors.de)
 - Owea Loads, ForWind cooperation

References

- Wildmann, N., Mauz, M., and Bange, J.: Two **fast temperature sensors** for probing of the atmospheric boundary layer using small remotely piloted aircraft (RPA), Atmos. Meas. Tech., 6, 2101-2113, doi:10.5194/amt-6-2101-2013, 2013.
- Wildmann, N., Ravi, S., and Bange, J.: Towards higher accuracy and better frequency response with standard multi-hole probes in turbulence measurement with remotely piloted aircraft (RPA), Atmos. Meas. Tech., 7, 1027-1041, doi:10.5194/amt-7-1027-2014, 2014.
- Wildmann, N., Kaufmann, F., and Bange, J.: An inverse modelling approach for frequency response correction of capacitive humidity sensors in ABL research with small unmanned aircraft, Atmos. Meas. Tech. Discuss., 7, 4407-4438, doi:10.5194/amtd-7-4407-2014, 2014.
- Wildmann, N., and Bange, J.: MASC A small Remotely Piloted Aircraft (RPA) for Wind Energy Research., Adv. Sci. Res., 11, 55-61, doi:10.5194/asr-11-55-2014, 2014.

Thank you for your attention!

