Towards a Better Understanding of the Early Morning Boundary Layer Transition, Using Observations of Small Unmanned Aerial Vehicles (UAV)

Norman Wildmann, Gerrit Anke Rau, Jens Bange Environmental Physics, Centre for Applied Geoscience (ZAG) Eberhard Karls University Tübingen

11 June 2014, AMS - BLT 2014, Leeds, Session 12

Outline

- 1. Experiment description EMBoLT2013 / Motivation
- 2. Instrument: Multi-purpose Airborne Sensor Carrier (MASC)
- 3. Measurement strategy: Vertical profiling and Constant Altitude Profiling (CAP)
- 4. Measurement results (selection)
- 5. Scaling and further analysis
- 6. Summary and Outlook

Early Morning Boundary Layer Transition Experiment EMBoLT2013

 \rightarrow Idea: Low-cost, single UAV experiment to investigate Early Morning Boundary Layer Transition, right in our backyard

 \rightarrow Flight Overview:

Date	Place	NoF	time	start	end	Flight pattern
dd.mm.yy			[min]	[UTC]	[UTC]	
08.05.13	Schnittlinger Berg	4	105	0515	0835	Vpro 500 m, Racetracks
06.06.13	Kirchentellinsfurt	5	60	0540	0732	Vpro 300 m, CAP
19.06.13	Schnittlinger Berg	9	133	0440	1000	Vpro 500 m, Racetracks
05.07.13	Kirchentellinsfurt	8	99	0505	0840	Vpro 300 m, CAP
23.07.13	Kirchentellinsfurt	8	85	0505	0850	Vpro 300 m, CAP
14.08.13	Kirchentellinsfurt	7	99	0605	0935	Vpro 500 m, CAP
05.09.13	Kirchentellinsfurt	8	98	0605	0930	Vpro 500 m, CAP

\rightarrow 49 flights at two locations and seven days are taken into account

Center for Applied Geoscience

Motivation

LÜBINGEN

MASC: Multi-purpose Airborne Sensor Carrier

(I told the designer, that I don't care about the colour, as long as it is well visible ...)

wingspan:	2.73.5 m		
total weight:	< 6 kg		
incl. sci. payload:	1.5 kg		
cruising speed:	25 m/s		
endurance:	pprox 1 hour		
electrical engine			
autopilot:	U Stuttgart		

Measurements:

- 3D wind vector
- air temperature
- water vapour
- 100 Hz sampling rate
- data link to ground station

Strategy

Morning transition of the ABL: momentary profiles

Vertical profiles of PTU and 3D wind vector, square pattern ascend

due to CAA limits: vertical profile above a very small horizontal area

Center for Applied Geoscience

Strategy

TÜBINGEN

Morning transition of the ABL: CAP

1 km long straight and level flight legs at 100 m altitude above ground level (agl)

 \rightarrow CAP (constant-altitude profiling during transition, see *Bange et al, 2007*)

Strategy

Morning transition of the ABL: surface heat flux

Additional surface flux from sonic anemometer at 2 m above ground level

Instrument was installed on 14 Aug and 05 Sep 2013 in Kirchentellinsfurt. Averaging time for sensible heat flux 10 minutes, to compare to UAV flights.

Morning transition of the ABL: 05 July 2013

Vertical profiles:

CAP, fluxes:

EBERHARD KARLS

UNIVERSITÄT

TÜBINGEN

EBERHARD KARLS

TÜBINGEN

UNIVERSITÄ

Morning transition of the ABL: 23 July 2013

Morning transition of the ABL: 14 August 2013

Vertical profiles:

CAP, fluxes:

EBERHARD KARLS

UNIVERSITÄL

TÜBINGEN

Morning transition of the ABL: 05 September 2013

Vertical profiles:

EBERHARD KARLS

TÜBINGEN

UNIVERSITÄ

Scaling parameters: Boundary Layer Depths z_i

... which was almost linearly increasing in time

from momentary profiles

Scaling parameters: Convection velocity w_* , Θ_*

Deardorff scales can be found, using surface flux $\langle w'\Theta'\rangle_0$ from sonic anemometer

$$w_* = \left[\frac{g}{\overline{\Theta}} z_i \langle w'\Theta' \rangle_0\right]^{1/3}$$
$$\Theta_* = \frac{\langle w'\Theta' \rangle_0}{w_*}$$

Garrat(1994)

- Which theories / formulations for the CBL are valid in the early morning transition?
- Which parameters can be found in literature and fit with the experiment?

EBERHARD KARLS

UNIVERSITÄI

TÜBINGEN

Scaled variances: 14 August 2013

Scaled variances of Θ , u and w were calculated and compared to literature:

- Observations maybe comparable to mixed layer theories
- but scaling parameters differ a lot

EBERHARD KARLS

UNIVERSITÄT

TÜBINGEN

Scaled variances: 05 September 2013

Second day of observations

- Non-textbook conditions give non-textbook results
- No clear relationship can be derived on this day

EBERHARD KARLS

UNIVERSITÄT

TÜBINGEN

Scaled variances: 05 September 2013

Possible reasons:

- high water vapour content
- strong entrainment
- remaining weak stability after mixing
- heterogeneous terrain
- flight legs too short

More experiments and data are necessary

Center for Applied Geoscience

Thank you for your attention!

