Detection of Entrainment Influences on Surface-Layer Measurements

Temperature and humidity

Effect in surface layer

entrainment flux: entrainment ratio

Effect in surface layer: wavelet spectra

- weak entrainment ••••

Effect in surface layer: PDF of q (skewness)

Entrainment ratio from radio soundings

Classification: *local* entrainment ratio q

- Entrainment fluxes($H_{\theta e}$, $L_v E_{qe}$) computed from
 - Surface fluxes H and $L_v E$
 - $\Delta \theta$ and Δq from soundings
 - $\beta_{\theta v} = 0.2$ (buoyancy entrainment)
- Classification based on *local* entrainment ratio
 F_{xe} / F_{x,local}

• Criterion:
$$\beta_{q,wheat} > 3 \beta_{\theta,wheat}$$

Classification: local entrainment ratio q

- Classification based on entrainment ratio $q(\beta_q)$ and entrainment ratio $\theta(\beta_{\theta})$
- Entrainment ratios (β_{θ} , β_{q}) computed from
 - Surface fluxes H and $L_v E$
 - $\Delta \theta$ and Δq from soundings
 - $\beta_{\theta v} = 0.2$ (buoyancy entrainment)
- **Criterion:** $\beta_{q,wheat} > 3 \beta_{\theta,wheat}$

ENINGEN

ENINGEN

June 25

