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A canonical case of atmospheric turbulence

• A very simple configuration 

• Linear stratification 

• A constant surface temperature 

• Buoyancy as thermodynamic variable 
 
 

• In total four parameters 
 

• A detailed description of this reference case is lacking in literature 

• Why do we want to study this? 

• Decay of turbulence: the afternoon transition
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How does the system evolve in time?

• Surface flux reduces in time towards zero 

• Height increases in time towards maximum height L 

• Vertically integrated kinetic energy reaches peak and then decays
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Derivation of a non-dimensional system and its two parameters

• Outer length scale 
largest length scale 

• Buoyancy flux scale 
viscous scaling 

• Velocity scale  
convective scale 

• Time scale 
time to warm reservoir 
(volume / flux)
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Direct numerical simulations of four Reynolds numbers

• Direct numerical simulation 

• Prandtl number of unity 

• Four different Reynolds numbers 

• Horizontal dimensions domain 2 x 2 m 

• Domain height dependent on L
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Table 1: Overview of the numerical simulations
Name N

x

⇥ N

y

⇥ N

z

b0 b0/N
2

⌫,  Re

ReS 1024 ⇥ 1024 ⇥ 384 0.5 0.1667 1 ⇥ 10

�5
285

ReM 1024 ⇥ 1024 ⇥ 768 1.0 0.3333 1 ⇥ 10

�5
718

ReL 1536 ⇥ 1536 ⇥ 768 1.6 0.5333 5 ⇥ 10

�6
2133

ReXL 2048 ⇥ 2048 ⇥ 1024 2.0 0.6667 5 ⇥ 10

�6
2873

4 Numerical simulations

4.1 Formulation and model description

The evolution of the system is described by the conservation equations for velocity vector u

i

, buoyancy b

and volume, formulated in flux form for a Boussinesq fluid:
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where ⇡ is the pressure.
The velocity boundary conditions are specified as no-penetration (w = 0) and no-slip (u = v = 0) at

the bottom boundary and no-penetration and free-slip (@u

@z

=

@v

@z

= 0) at the top. The top boundary con-
dition for buoyancy is a fixed gradient equal to the stratification N

2. The initial fields for velocity are set
to zero, whereas the initial buoyancy profile is zero at the surface and increases with a constant gradient
N

2 with height. Random noise is superimposed on the velocity fields in order to provide perturbations
that trigger convection. The noise exponentially decays with height and is negligible beyond 0.1 L.

We use MicroHH (http://microhh.org), which is a 2D-parallel combined DNS/LES code. Fully con-
servative, fourth-order accurate finite difference schemes (Morinishi et al., 1998; Vasilyev, 2000) have
been used, combined with a low-storage third-order Runge-Kutta time integration scheme (Williamson,
1980). The pressure is acquired by solving a Poisson equation. Here, the horizontal dimensions are de-
coupled using a Fourier decomposition, and for each mode a heptadiagonal matrix is solved. In the top
of the domain (upper 25 percent) a damping layer is applied that prevents the reflection of gravity waves
back into the domain with a damping time scale that is infinity at the height where the layer starts and
decreases exponentially to N/(2⇡) at the top of the domain.

4.2 Numerical experiments

The results in this study are based on four direct numerical simulations, with varying Reynolds number
and an identical Prandtl number of unity (Table 1). Each simulation has been run at a horizontal domain
size of 2 m, with a linear stratification N

2 of 3 s�2. The variations in the Reynolds number are acquired
by varying the surface buoyancy b0 and the thermal diffusivity . As the acquired boundary layer height
is well approximated by b0/N

2, the width-to-height aspect ratio reduces with Reynolds number from 12
in simulation ReS to 3 in ReXL. [ADD RUN TIME]
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Time evolution of three relevant variables in all simulations

• Surface buoyancy flux decays towards zero 

• Boundary layer depth evolves towards maximum given by L 

• Integrated kinetic energy peaks early and then slowly decays
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surface buoyancy flux boundary layer depth integrated kinetic energy
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Non-dimensional results

• With scaling parameters L, T and B results can be plotted non-dimensional 

• Non-dimensionalization leads to collapsing graphs 

• Results of ReL and ReXL converge: extrapolation to atmosphere possible
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Derivation of a mathematical model

• Our chosen boundary layer height is an  
integral length scale 
 
 
 

• We can derive an exact expression for the rate  
of change of this length scale based on the simulation 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Non-dimensional form of the mathematical model

• Differential equation is the same as that for a bulk model without 
entrainment (encroachment model) 
 
 

• Equation can be rewritten in non-dimensional variables with the help of the 
defined length, time and buoyancy scales L, T and B 
 
 

• For high Reynolds numbers, second term in numerator can be neglected
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A model for the surface buoyancy flux is needed

• We propose a model for the surface buoyancy flux 

• The mixed-layer value is approximated by min(b)  
 
 
 
 
 
 
 

• The values for the constants can be derived from the simulations
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Final form of the mathematical model for our system

• Substitution of the analytical model for the surface buoyancy flux gives  
 
 

• In terms of non-dimensional variables this is 

• This can be solved analytically and all the scaling variables can be derived
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Validation of the derived mathematical model

• The model matches very well with the data 

• Nearly perfect match for the two highest Reynolds number cases 

• Model predicts decay rate of kinetic energy in a system that slowly dies out

12
surface buoyancy flux boundary layer depth integrated kinetic energy

0 10 20 30 40 50 60
t/T

0.00

0.05

0.10

0.15

0.20

h B
si

/B

a)
ReS
ReM
ReL
ReXL
model

0 10 20 30 40 50 60
t/T

0.0

0.2

0.4

0.6

0.8

1.0

1.2
h/

L

b)

0 10 20 30 40 50 60
t/T

0.000

0.005

0.010

0.015

0.020

0.025

0.030

I e
/(

U
2 L)

c)



Back to typical atmospheric dimensions

• Typical atmospheric conditions 

• Excess surface temperature 6 K, lapse rate 6 K km-1, thus L = 1000 m 

• Three exchange rates: smooth, moderately rough and very rough surface 

• Decay does not follow a power law, but has increasingly negative slope
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boundary layer depth surface buoyancy flux integrated kinetic energy
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Conclusions

• The convective boundary layer over surface with a fixed surface temperature 

• Complex transient system with a peak in integrated kinetic energy 

• Direct numeral simulations of system can be extrapolated to atmosphere 

• Reynolds number similarity presented 

• A model derived for high Reynolds number flows 

• Mathematical model is able to predict bulk characteristics of the system 

• Model can be used to predict the afternoon transition of the CBL 

• The decay of kinetic energy in the boundary layer does not follow power law
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