Counter gradient heat flux and lifted temperature minimum during evening transition

E. Blay-Carreras, E. R. Pardyjak, <u>D. Pino</u>, D. C. Alexander, F. Lohou, M. Lothon, S. W. Hoch, J. Cuxart, D. Martínez, and J. Reuder

WUR, 8 February 2016

Published in:

Atmos. Chem. Phys., 14, 9077–9085, 2014 Atmos. Chem. Phys., 15, 6981–6991, 2015

The hypothesis \rightarrow during the evening transition, a delay exists between the instant when the buoyancy flux goes to zero and the time when the local gradient of the virtual potential temperature changes sign.

There is a delay time in all the IOP analyzed (30-80 min)

Why some days DT is similar to the convective time?

Monin-Obukhov length analysis

<u>Convective days</u> 24/06 & 30/06: IOPs with large -z/L averaged between 12 UTC-16:45UTC have small DT-CT.

Weakly convective days

25/06 & 27/06 \rightarrow IOP with small -z/L averaged between 12UTC-16:45UTC have large DT-CT.

IOP	DT	Convective	-z/ L	Convective
day	(min)	time (min)		intensity
24 June (IOP4)	38	36	0.297	Strong
25 June (IOP5)	48	26.37	0.102	Weak
27 June (IOP7)	72	42	0.1205	Weak
30 June (IOP8)	30	27	0.289	Strong
1 July (IOP9)	40	33	0.22	Moderate

Weakly convective IOPs have larger $u_* \rightarrow$ more horizontal turbulence \rightarrow larger delay time

Obukhov Length

Exponential relation between DT-CT and -z/L

Conclusions

Countergradient heat flux observations

- There is a <u>delay</u> between buoyancy flux cease and the change in the vertical gradient of θ_v .
- During moderate convective days, the delay time is small and close to the last eddy movement (<u>convective time</u>).
- When convection is lower, larger u_{*}, the delay time is larger due to the increase of <u>horizontal turbulence</u>.
- <u>**Turbulent viscosity and thermal diffusivity** may help to slow down the last eddy movement increasing the convective time.</u>

- Lifted Temperature Minimum (LTM) is characterized by a temperature minimum some tenths of cm above to the surface (0.1-0.5 m).
- Our research **objectives** :
 - 1. To investigate the **existence** of the LTM during the **evening transition**.
 - 2. To study the relevance of mean **wind characteristics** (driven by orography).
 - 3. To analyze the importance of **turbulence** to observe LTM during evening transition.
 - 4. To analyze role **radiation** in the appearance of LTM.

- By using T1 and T2 measurements on 24, 25, 27, 30 June and 1 and 2 July 2011.
- We detect and characterize LTM:

$$\theta_{\text{base}} - \theta_{\text{LTM}\downarrow} < 0 \quad \text{and} \quad \theta_{\text{LTM}\uparrow} - \theta_{\text{base}} > 1$$

$$\text{LTM}_{\text{intensity}} = \theta_{\text{base}} - \theta_{\text{LTM}\downarrow} \qquad \text{Mukund et a}$$

 $\begin{array}{c} \mathbf{293}\\ \theta \ (\mathrm{K}) \end{array}$

294

T1

1.5

0.5

0∟ 291

292

z (m)

1750

- 1800 - 1810 - 1820

- 1830 - 1840

295

Mean wind characteristics (2.2 or 2 m)

Typical mountain–plain circulation: daytime plain–mountain wind early evening calm conditions and nighttime mountain– plain wind.

- 27 June 2011: no decrease of WS → LTM not observed.
- 1 July: WS decreases
 → Large LTM intensity.

Turbulence (T2, 2 m) – Wind speed at 20 Hz

Turbulence

- •Gradient Richardson number (Ri_q) crucial for studying LTM at night.
- •Ri_g threshold 0.1 at night to observe LTM (Oke, 1970).
- •We calculate Ri_g using T_{base} and $T_{LTM \uparrow}$
- •Large increase rate of Ri_g is obtained in the cases with a faster decrease of turbulence.

Radiation

•LTM \rightarrow radiative characteristics of the **air near the ground** is modified (Mukund et al., 2013).

•Change of decay rate at LTM height between 17:30-18:30 UTC.

Conclusions

Lifted temperature minimum during evening transition

- LTM: different intensity and duration for all IOPs (no LTM on 27/06/11).
- LTM is observed during evening transition in calm conditions (mountain-plain circulation).
- During early evening calm period, we observe a decrease in wind velocity and turbulence.
- LTM is observed due to a change in the **radiative conditions**.