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Outline:

TKE decay laws: Is it easy to interprétlaws?

Results from observed surface TKE budgets

Results from a simple 'toy’ model for TKE (near-aagé and above)

Some general questionsto address in this session:

Question 1.: Do we need a smooth transition regiaeterden CBL to SBL at
the surface (including an adequate scaling)

Question 2: How does this transition affect the fation/representation of
the residual layer?

Question 3: What is the role of surface heterogegrtdifferent length scales

of non-uniformity)?



Upon scaling of near-surface TKE in the
afternoon transition
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Observation Period days, Atmos. Chem. Phys. Disc2@%5.

Part 2: Nilsson, E., Lothon, M., Lohou, F., Pardyjak, Eartégensis, O., and
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Part 2 A ssmple TKE model, Atmos. Chem. Phys. Discuss., 2015.

In relationship to earlier studies
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TKE decay in the afternoon transition

Grass 1
. . () ' — 5 00R >
Is a representation with both TKE and L BN
. . . ) . — - — _ AT
time on a logarithmic axis easy to interpret? 01l ~ \
Ng. “ . . b
- . f D
=< \ \
0.01F| O data A N
F|— — NBas N
[ model with erfc \
Mo o e N
(from Part 2) 0001 : TR

t'/t.

least )—6). Ir"; tlhe case of a linear change of TKE ;vith timé such thélt 'FKE =kt + fKEU,
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. . _ oy _ TKE, : : .
becomes: a = = = 1-— TRE k7 This shows that a becomes a function of time for the

simple case of a linear change of TKE with time. Furthermore, two values of observed
a during a single afternoon such as -2 and —6 can occur without necessarily implying
a different decay rate of TKE in terms of m?s~> at those times. Therefore, and in the

The same decay rate in terms ofghcan have different exponant values




What governs the turbulence kinetic energy is
most effectively studied by a TKE budget
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Determination of TKE budget terms
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Shear production from mean
wind gradient and turbulent
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Here a 1s the universal Kolmogorov constant = ().52
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How does the different budget terms evolve
in the afternoon?

TKE budget from 12 UTC (t = 0) to zero buoyancyf(ti= 1)

June 19
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Evaluation of 1'wo dlSSlpO‘l‘lOﬂ models

(fromPart1l)
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Summary of some results used in a simple TKE 'toy' model:

 TKE tendency isalways small = A ’quasi-stationary’
evolution of TKE

Motivate us to use quasi-steady idealized verpcatiles
for our CBL description

e Even verynear surface dissipation rates were found to bafluenced
by mixed layer dynamics and.z

Motivates use of length-scale parameterizatiD T s

7} A

* As a crude approximatioabout 60% of
production of turbulenceislocally dissipated and
40% Istransported (from Part 1

and Part 2)



A 'simple’ TKE toy model
(Part 2)
« 1-Dimensional model (only vertical direction)
 TKE budget for each vertical level used to callBKE tendency dE/dt
dE/dt=S+B+T+D
and thereby update E = TKE
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Some assumptions regarding the height variation of
budget terms:
(Part 2)

» Assumes vertical profiles farK E budget ter ms with shape of idealized

ssmplified quasi-steady profiles (inspired by profiles for a barotropic CBL,
Wyngaard 2010 and overall similar to Lenschow 1974)

-linear ly decaying surface fluxes with height (momentum, bouyancy)
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(Part 2)
Inputs for the model:

It is based
on an idealized mixed-layer approximation and a simplified near-surface TKE budget.
In this model, the TKE is dependent on four budget terms (turbulent dissipation rate,
buoyancy production, shear production and vertical transport of TKE) and only requires
measurements of three input available (near-surface buoyancy flux, boundary layer
depth and wind speed at one height in the surface layer).

The model also has gwalue (and displacement height d)



20 June
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The model’s errors result from the exclusion of processes such as elevated shear
production and horizontal advection. The model also produces an overly rapid decay
of shear production with height. However, the most influential budget terms governing
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After evaluation we also performed some idealizatuiations for different
buoyancy- shear effects in situations with consaaak time-varying wind

(from Part 2)
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time-varying winds during the afternoon transition. From this, we conclude that many
different TKE decay rates are possible under time-varying winds and that generalizing
the decay with simple scaling laws for near-surface TKE of the form ¢ may be
qguestionable.
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TKE in the afternoon transition
above the surface layer

Darbieu et al. (2015)

Considered a case study, June 20:
1.0bserved sensible andlatent heat flux
2.Correct forcing time scales
3.Initializedwith observed wind and
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TKE in the afternoon transition
above the surface layer

(From Part 2)

We use the simple 1D TKE model to discuss the rediuneak
levels of TKE and dissipation rate obtained inubeer boundary
layer during still unstable conditions
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TKE in the afternoon transition
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Effectsto be studied further:

Elevated shear production and
directional wind shear related to meso-
scale effects and mountain-plain

circulation

A batchelor student Robin Isaksson in Uppsala
will focus on this for June 20 using WRF and

observations.
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Signatures of residual layer turbulence
remaining at elevated levels also in the

evening

A Phd student Nina Svensson in Uppsala
Is studying coastal and evening
transitions with horizontal roll structures
generated over land that survives in
stable stratification when advected out
over the Baltic Sea.



General questionsto address in this session:

Question 1:

Answer 1:

Question 2:

Answer 2:

Question 3:

Answer 3:

Do we need a smooth transition regime between CBL to SBL at
the surface (including an adequate scaling)

Yesperhapsbut time scales? and more processesficrease realism
A simple ‘smooth’ transition sketch may however lseful as a
starting point for discussion of our conceptual enstanding of the situation

How doesthistransition affect the for mation/r epresentation of
theresidual layer?

We introduced thpre-residual layerfor the unstable afternoon

transition which may help in discussianfslow turbulence onset conditions
for the actual residual layefhis is not complete! Elevated wind shear
effects and horizontal advection is for instanailag in our simple
model/sketch

What istherole of surface heterogeneity (different length scales
of non-unifor mity)?

We only explored a little bit what diféet surface forcings may imply
for dissipation rate and TKBore work neededncluding
studies of what blending heights are for diffeneatameters



