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Overview

Case study from observations of Doppler Lidar and in-situ sensors
Clear air conditions

Main points:

-TKE decrease during the afternoon transition (vertical view)

-TKE budget at different height using in-situ sensors / Lidar

Which term prevails at what height?

- Evolution of w’ Integral scales — How it is linked to the TKE budget?

Method:

Statistics in the temporal domain using lidar and in-situ measurements

(Eulerian point of view)

- Horizontal homogeneity (no heterogeneity from advection)

- Taylor « frozen turbulence » hypothesis

- 1h gate: compromise between sufficient number of eddies and stationary conditions
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Experimental sites and instrumentation

WISCOM

Wisconsin, Park Falls, USA, June 2007
«— Doppler Lidar: (NASA Langley)

2 um pulsed lase (80 mJ/ 2.5 Hz)

Range & Time resolution: 75 m/40 s

Sonic anemometers 30, 122, 396 m

BLLAST

Lannemezan, FRANCE, June-July 2011
Doppler Lidar: WindCube 200 (Leosphere)
1.5 um pulsed fiber laser (100 pJ/ 20kHz)
Range & Time resolution:50m/5s

_

Sonic anemometers 30, 60 m
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2 cases study
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TKE,, (=0.5w’2) afternoon decay
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- The decrease is faster and earlier at higher altitude
—> The decrease of TKE,, seems to follow the decreasing law of

surface heat flux rather than any power law t.=z./w,



TKE,, contribution in TKE decay
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- At 30 and 122 m the main
source of TKE is from
horizontal components

—->At 396 m:

TKE is equally shared
between the 3 components
Same rate of decrease
during the main part of the
afternoon transition (until
18:30)



TKE budget
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TKE budget equation assuming horizontal homogeneity
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Nieuswstadt and Brost (1986), Fernando et al. (2003), Nadeau et al. (2011)

analyzed the TKE decay neglecting shear, transport of TKE and pressure terms.
What about observations?

2/3k—5/3

* € is calculated using Kolmogorov law in the inertial subrange: E(k) ~& where K is the

wavenumber and E(k) the spectral density of TKE
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The different terms in TKE budget
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TKE budget- the missing term
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- Pressure transport and buoyancy seem to be the key players to balance TKE above

the surface layer (confirms LES results in Pino et al. 2006)

AMS 20BLT, Boston, 8-13 July 2012



Buoyancy — Pressure transport oscillation

Neglecting shear, transport of TKE above the surface layer
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In Boussinesq approximation, we can find the following wave equation:
2
(VZW')+ NZViIW': 0

Brunt-Vaisala pulsation

ot’

Dispersion relation f°k*—fik: =0

Condition for wave propagation: f < fN

Although we don’t have clear evidence of wave phenomenon...

In the case of pressure transport — buoyancy oscillations, the atmosphere
IS expected to act as a low pass filter for convective forcing frequency

AMS 20BLT, Boston, 8-13 July 2012



Integral scale estimates 7, = max([ ACR(w))

Gravity waves
Y June 23, WISCOM July 02, BLLAST
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Large integral scales remain during the transition in the mid-CBL
while they disappear close to the surface
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Conclusion

-w’2 decay seems to follow the decrease of surface heat flux for several days (~ 7)
during BLLAST and WISCOM experiments.

-Doppler lidar measurements show that w2 decreases earlier and faster at higher
altitude

- In the middle of the CBL, the evolution and contribution of each component of TKE
seem to be similar during the transition (not the case close to the surface layer)

-TKE budget seems to show a major role of the pressure term to balance buoyancy
positive anomalie (relative to dissipation) in the mid CBL.

-Shear and TKE transport do play a role but there are not sufficient to balance the
TKE budget.

-Integral scales are maintained in the mid-CBL while there become smaller close to
the surface. Possible explanation can be that the atmosphere acts as a low pass filter
for convective forcing frequency during the transition.
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Lenght scale |, and Brunt-Vaisala frequency
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