Forecasting radiation fog at climatologically contrasting sites: evaluation of statistical methods and WRF

Carlos Román-Cascón, G.J. Steeneveld, C. Yagüe, M. Sastre, J.A. Arrillaga and G. Maqueda

Univ. Complutense Madrid

Motivation

1482

no

76

Leaf wetness

Hit rate= (42/86)=0.49 False alarm rate= (34/76)=0.45

Hardly any skill!

1558

Objectives

- Fog climatology difference between Cabauw (Netherlands) and CIBA (Spain)
- Evaluation statistical forecasting method Menut et al '14 for Cabauw and CIBA
- Comparison to 3D- WRF model
- A method to estimate fog thickness from screen level surface visibility and friction velocity.

Two contrasting sites

Available measurements

Menut et al (2014) method

- WRF unable to forecast fog (LWC) for PARISfog campaign
- Though can we use prefog conditions?

For quality of life

Does it also work for CIBA?

Overview thresholds

	ParisFog	Cabauw	CIBA
∆ T2m (°C)	<-0.5	<-0.5	<0.5
RH2m (%)	>90	>94	>88
U10m (m/s)	< 3	< 4.5	< 3.6
Lwnet (W/m2)	<-10	<-5	<-5

Stat. forecasting: observations as input

CE Co	SAR mbination	HR	FA	GSS	$U_{10m} \ (m s^{-1})$	<i>RH</i> _{2m} (%)	$\frac{F_{\rm IR}}{({\rm W}{\rm m}^{-2})}$	$\begin{array}{c} \Delta T_{2m} \\ (^{\circ}C) \end{array}$	u_* (m s ⁻¹)	$\begin{array}{c} \triangle VIS_{2m} \\ (m) \end{array}$
1	M14 thresholds	86.7	21.7	0.049	3	90	-10	-0.5	***	***
2	CESAR thresholds	82.1	30.6	0.029	4.5	94	-5	-0.5	***	***
3	Optimum HR	95.5	38.9	0.025	4	88	5	0.0	***	***
4	Optimum FA	29.8	2,0	0.131	1.5	98	-20	-1.5	***	***
5	Optimum GSS	40.4	3.1	0.136	1.5	95	-20	-1.5	***	***
6	$-RH_{2m}$	43.1	3.7	0.128	1.5	***	-20	-1.5	***	***
7	$-RH_{2m}-U_{10m}+u_{*}$	70.4	12.2	0.074	***	***	-20	-0.5	0.05	***
8	$-RH_{2m}+\Delta VIS_{2m}$	33.0	1.9	0.150	1.5	***	-20	-1.5	***	-5500

CIBA Comb	ination	HR	FA	GSS	$U_{10m} \ (m s^{-1})$	RH _{10m} (%)	$\frac{F_{\rm IR}}{({\rm W}{\rm m}^{-2})}$	$\begin{array}{c} \Delta T_{\rm 2m} \\ (^{\circ}{\rm C}) \end{array}$	u_{*} (m s ⁻¹)
1	M14 thresholds	64.3	14.0	0.064	3.0	90	-10	-0.5	***
2	CIBA thresholds	73.9	22.3	0.044	3.6	88	-10	0.5	***
3	Optimum HR	80.9	21.0	0.053	1.8	80	5	1.5	***
4	Optimum FA	32.5	0.4	0.265	1.5	98	0	-1.5	***
5	Optimum GSS	41.4	0.7	0.303	1.5	98	0	-1.5	***
6	$-U_{10m} + u_*$	40.8	0.6	0.309	***	98	0	0	0.15

High resolution WRF setup

- 51 layers (28 below 1000 m, 8 below 100 m)
- 300 x 300 grids
- DX= 2.5 km
- Settings:
 - MYNN2.5
 - RRTM
 - WDM6
 - NOAH LSM

Can WRF predict prefog conditions?

Stat. forecasting: coarse resolution WRF as input 48 h forecast

	HR	FA	GSS	n° for $\alpha_n > 0.9$			
				FIR	RH	ΔT_{2m}	U_{10m}
CESAR							
First forecasted day							
Combination 1 (M14)	33.3	12.2	0.067	351	643	426	276
Combination 5 (GSS)	3.3	0.8	0.022	304	475	117	79
Combination 3 (HR)	73.3	34.7	0.053	657	720	536	427
Second forecasted day							
Combination 1 (M14)	20.0	10.5	0.034	351	653	402	249
Combination 5 (GSS)	10.0	0.4	0.086	304	489	161	50
Combination 3 (HR)	86.7	37.4	0.066	657	720	557	428
CIBA							
First forecasted day							
Combination 1 (M14)	33.7	16.0	0.093	429	532	474	505
Combination 5 (GSS)	17.4	7.6	0.063	705	290	474	321
Combination 3 (HR)	47.8	31.9	0.060	718	632	662	331
Second forecasted day							
Combination 1 (M14)	34.8	17.3	0.089	429	578	479	522
Combination 5 (GSS)	31.5	12.8	0.106	705	391	479	325
Combination 3 (HR)	59.8	35.7	0.086	718	660	674	325

Thresholds from observations not applicable to WRF output

High resolution WRF November 2011 Cabauw

- 51 layers (28 below 1000 m, 8 below 100 m)
- 300 x 300 grids
- DX= 2.5 km
- Settings:
 - MYNN2.5
 - RRTM
 - WDM6
 - NOAH LSM

High resolution WRF January 2012 CIBA

High resolution WRF January 2012 CIBA

Fog thickness

- Essential variable for aviation.
- Can we estimate this based on near surface observations?

Conclusions

- Fog climatology at CESAR: radiation-fog events evenly distributed throughout the whole year.
- Relatively short living (more than 50% less than 6 hours) and dissipate around sunrise. Fog at CESAR is
 usually quite shallow and easy to dissipate around sunrise.
- Radiation-fog events at CIBA mainly during late-autumn/winter under persistent anticyclones. The
 relatively lower humidity at CIBA makes radiation fog forms later in the night in general, after strong
 nocturnal surface cooling. These radiation-fog events are usually more persistent than at CESAR.
- Evaluation of Menut et al statistical method: thresholds differ per site
- WRF forecasts as input for statistical method: relative poor skill
- Direct model results from high resolution WRF 3D: reasonable forecast of the liquid water content. Surpsiingly the 24-48 forecast range performs better than 0-24 h.
- Fog thickness predictable from surface visibility and friction velocity

Thanks for your attention

References

Román-Cascón, C., G.J. Steeneveld, C. Yagüe, M. Sastre, J.A. Arrillaga, G. Maqueda, 2015: Forecasting radiation fog at climatologically contrasting sites: evaluation of statistical methods and WRF, Q. J. Roy. Meteorol. Soc., in press.

Román-Cascón, C., C. Yagüe, G.J. Steeneveld, M. Sastre, J.A. Arrillaga, G. Maqueda, 2016: Estimating fog-top height through near-surface micrometeorological measurements, Atmos. Res., 170, 76-86.