Contributions of large-scale forcing
to diurnal evolution CBL:
Observations, Mixed-layer theory and LES (25 June)

Henk Pietersen
BLLAST group

WAGENINGEN UNIVERSITY g’ .'
g METEOROLOGY AND AIR QUALITY &




Are we able to identify and quantify

the main dynamic contributions that

drive the BLLAST convective ABL?
Poor's man bottom-up approach
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Strategy of the research

Step by step reconstructing the convective
boundary dynamic characteristics

Identify the main contributions (from surface
forcing to large scale phenomena)

Quantify their evolution and magnitude

Understanding heat and moisture budget

Introducing first the IOP situation
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Our working hypothesis

Does BLLAST-CBL fits within the prototype of
convective boundary layer solely driven by surface
and entrainment processes?

Method

Guided and constrained by observations, we
reproduce step by step the potential contributions
to the CBL-dynamic evolution

- Large-eddy simulation (DALES)

- Mixed-layer theory
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1st Experiment: Classical CBL prototype
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BL height AGL [m]

Boundary layer without large scale forcing
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2nd Experiment: Introducing large scale forcing
in the classical CBL prototype
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BL height AGL [m]

Boundary layer dynamics including subsidence

and advection heat/moisture
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vertical speed [m/s]

Evolution on time subsidence and entrainment
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Conclusions

Large scale forcings play a key role in
the development of the BLLAST convective
boundary layer

Combinations of observations/model provides
an estimation of the magnitude of subsidence
and advection necessary to understand heat and
moisture budget

Do large scale forcing influence the afternoon
turbulence decay?
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What are the flux characteristics of the
vertical structure?

Aircraft measurements and DALES experiments
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Vertical profiles of heat and moisture flux
(14.30 UTC)
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Remaining challenging questions:

How does it influence the large scale forcing the
afternoon transition?

Influence on the 6- and g-profiles and buoyancy
flux: "demixing” and decaying in TKE

Transition from convectively driven ABL to
mechanically driven



