The BOU tethered balloon: a low-cost profiling system for monitoring the lower ABL over complex terrain.

B. Martí, D. Martínez-Villagrasa, A. López-Grifol, G.Simó, B.Wrenger, J.Dünnermann, R. Picos, J.Cuxart

Hochschule Ostwestfalen-Lippe University of Applied Sciences

Introduction

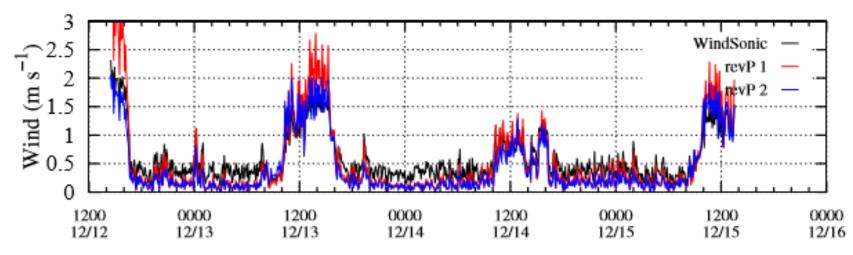
- What is the BOU?
- Intercomparison with a surface station
- CCP17 measurements validation
- Conclusions

What is the BOU?

-Arduino controlled acquisition system -Custom made connection shield Sensors:

T and RH (hyt) wind and T (rev.P)

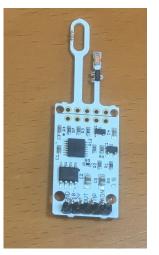
P, T and IMU (Gy-80)


Intercomparison with a surface station

-Surface balance micrometeorological station(ECUIB) is situated at the UIB Campus

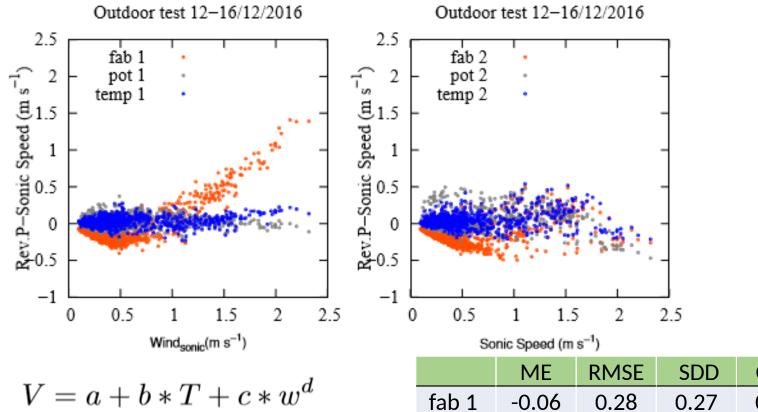
-The ECUIB sensors are used to compare the BOU sensors and improve its measurements

Intercomparison with surface station: wind



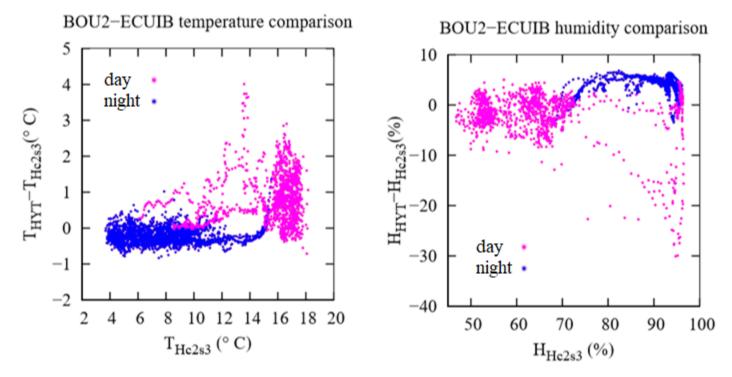
Rev.P comparison against 2D windsonic series)

(5min avg


- Winds of 0.5m/s are underestimated
- Winds greater than 1m/s are not well represented

□ The general calibration curve provided by the manufacturer can be further improved

Rev.P sensor


Intercomparison with surface station: wind

A new power fit using the intercomparison data reduces the differences significantly

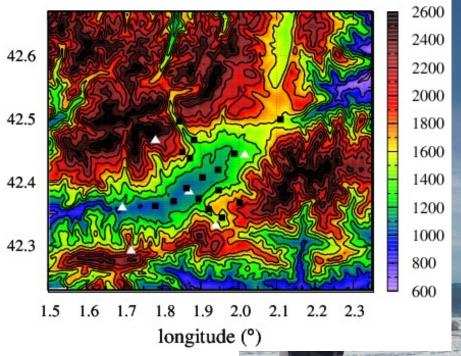
	ME	RMSE	SDD	COR			
fab 1	-0.06	0.28	0.27	0.98			
pot 1	0.02	0.08	0.08	0.98			
temp 1	0.03	0.07	0.07	0.99			
fab 2	-0.16	0.23	0.16	0.95			
pot 2	0.02	0.14	0.13	0.95			
temp 2	0.04	0.11	0.10	0.97			

Intercomparison with superficial station: Temperature and humidity

Despite direct radiation protection, diurnal measurements are affected

HYT	SDD	RMSE	COR	HYT	SDD	RMSE	COR
T 16-8 UTC	0.2	0.3	0.99	RH 16-8 UTC	1.3	4.7	0.97
T 8-16 UTC	0.7	1.1	0.97	RH 8-16 UTC	4.7	5.0	0.96

Cerdanya Cold Pool Experiment CC


Several campaigns developed in la Cerdanya -2011 -2015

-2017 🗆 109

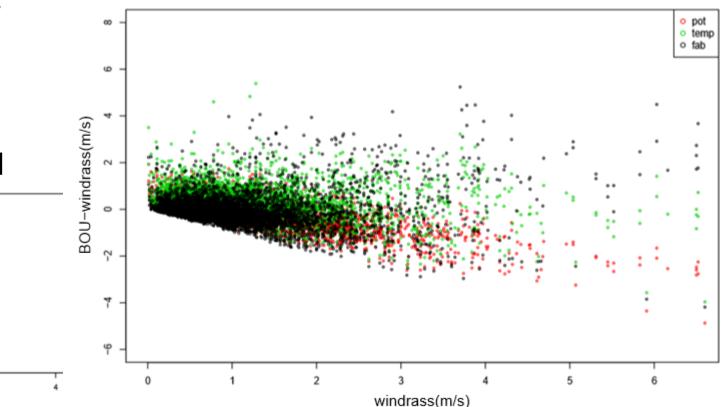
Several measurements taken -Windrass

-Balance station

- -Tethered balloon soundings
- -Radiosoundings
- -Multicopter
- -Local station (EMA)

CCP17 measurement validation: windrass

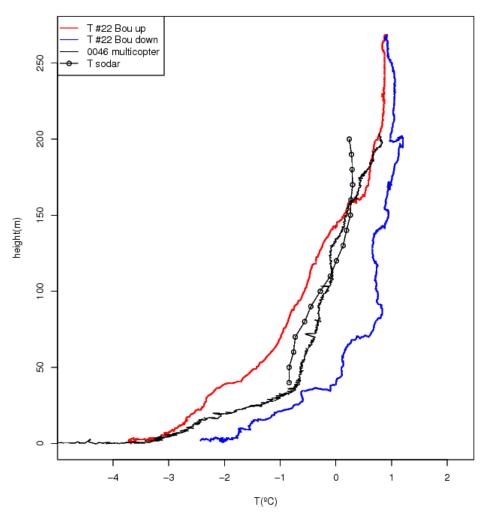
15 minute average sodar measurements of wind


10 meter resolution -Local station (EMA) 10m wind

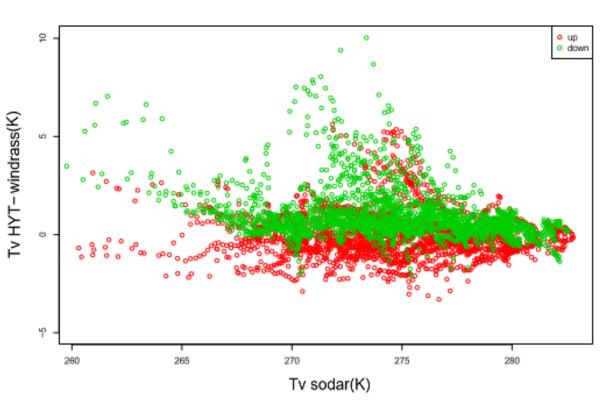
wind EMA (m/s)

BOU-EMA

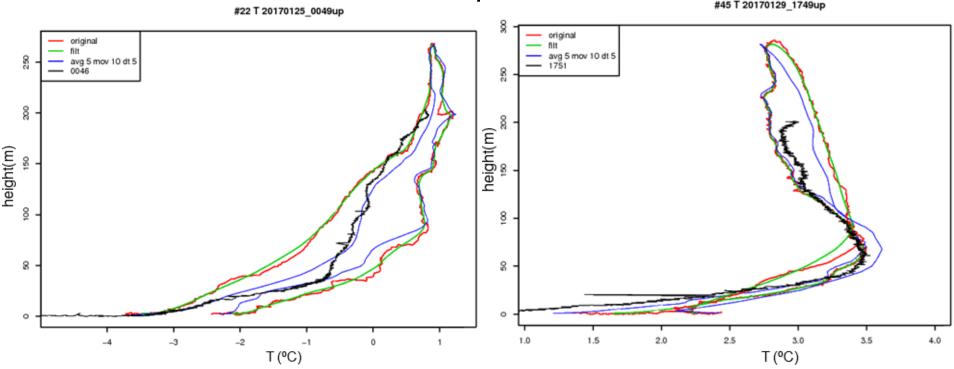
	SDD	ME	MAE	RMSE	COR
pot-windrass	0.57	-0.14	0.41	0.58	0.56
temp-windrass	0.60	0.27	0.49	0.66	0.56
fab-windrass	0.73	-0.04	0.49	0.73	0.56


wind BOU-windrass

CCP17 measurement validation: Temperature


#22 T 20170125_0049

-Windrass 15 minute average sodar measurements of T 10 meter resolution -Local station (EMA) 1,5m Temperature and Humidity -Multicopter



CCP17 measurement validation: Temperature

-Upward and downward temperature profiles against the windrass show a bias -It is partly attributed to the time response of the sensor

CCP17 measurement validation: Temperature

-We check the time lag correction with the multicopter profiles that are simultaneous

-To prevent unnecessary alteration of the physics of the profiles we will modify only the upwards profiles.

Conclusions

- A robust system for profiling has been developed
- The wind sensor (rev.P) needs calibration before campaign use
- After calibration rev.P's error in static is of 0.1m/s
- The power fit with temperature correction prevents overestimation of wind.
- The HYT performs differently during daylight. An error of 0.2K at night and during the day an error of 0.7 is considered the worst case scenario.
- The difference between upwards and downwards profiles in temperature due to sensor response time is greatly corrected by only modifying the upwards profile.
- Operation is recommended at constant velocity under 0.5m/s, of 0,3m/s if possible
- An investment in higher priced sensors with a faster response time may be advisable

Further work

- The humidity analysis of the profiles is under analysis
- Finding a temperature and humidity sensor with faster response time
- Analyse the IMU data to estimate wind direction
- Adding a gps to the BOU for estimating direction of the wind

Acknowledgments

- Meteocat. Servei meteorològic de Catalunya
- Grants of the Spanish Government CGL2015-65627-C3-1-R (that includes Regional Funds FEDER) and PCIN-2014-016-C07-01 (within the framework of ERA NET PLUS NEWA).

Thank you

Questions?